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SUMMARY

Marine Structures are employed 1in the exploration, production and
transportation of offshore minerals as well as for transportation of people
and products across nations and for the defense of the country. The
structures used for the production of o0il and gas are generally located at a
particular site offshore while others are mobile. These structures are often
at the mercy of the harsh environment of the ocean in the form of waves, wind,
current and earthquake and must survive the severest storm encountered during

its lifetime.

Design of an offshore structure 1is based on the extreme responses
experienced by the components of the structure under the influence of the
environment faced by the structure in its Jifetime. [f the structural
components may be treated as a linear system, the derivation of the extreme
responses 1is relatively straightforward., However, most practical offshore
systems have nontlinear responses, and these design tools are not applicable.

The purpose of this report is to perform an extensive state-of-the-art
review of the available and emerging techniques for the determination of
extreme responses of a nonlinear marine structure and system. The contents of
this report may be categorized into two parts; one presents the nonlinear
characteristics of wave-induced forces and corresponding structural responses,
and the other discusses the extreme value analysis of nonlinear systems
relevant to offshore and marine structure design. The report reviews the
generic procedures for the nonlinear analysis of marine structures and
investigates the method in which they may be applied to the probability

anaiysis of extreme events.

Different types of nonlinear behavior of interest for various classes of
offshore structures have bcen studied. Nonlinearities in the analysis of
these structures appear at various stages, e.g., waves, material properties,
forcing function and motion response. The solutions of the dynamic problem
with time dependent loads fall into two main categories: deterministic and
nondeterministic (stochastic). Deterministic solutions include both the time
domain (time history analysis) and the frequency domain analysis. While the
time history analysis can retain most of the nonlinearities in a marine
system, frequency domain solutions are necessarily linearized. Review of




these various generic procedures for nonlinear analysis has been made.

In the case of probabilisitc metnocd of obtaining extremes of a response
of an offshore structure, distinctions are made regarding short-term versus

long-term,

A short term means a period of time which is short encugh to describe the
sea and the response as a stationary random process. This period of time is
on the order of 30 minutes to 3 hours. It is a general practice to assume
that the short-term statistical distribution of response amplitudes follows
the Rayleigh distribution function. Based on this function, the probabilities
of certain extremes over a given short term may be predicted. The waves are
assumed Gaussian for this purpose. For responses, the narrow bandedness and
linearity are inherent assumptions. However, the response (output) of a
nonlinear system 1is a non-Gaussian random process even though the waves
(input) is Gaussian. This fundamental principle has becn addressed in the
report. The prediction of the statistical properties of marine systems with
strong nonlinear characteristics is not possible using a linear analysis. For
statistical analysis of nonlinear systems, the probabiiistic prediction of
non-Gaussian random process is essential. This area has been discussed in the

report. and several non-Gaussian random processes have been included,

For extreme value statistics, a long-term (of the order of 20-100 years)
distribution of the response parameters is often required. The long~term non-
stationary random process is sometimes written as a sum of a large number of
short-term stationary process. The extreme vaijues of a Jiven rcroberhility

level are also obtained by order-statistics. This area is briefly reviewed.

Various available methods in the above areas have been summarized, and
their applicability, assumptions and limitations have been discussed. Based
on this discusssion, several conclusions and recommendations have been drawn.

iv
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TABLE 1.1 - TYPES OF OFFSHORE STRUCTURES

MARINE AND
OFFSHORE STRUCTURES

FIXEDL,2 SLOATINGZ»3 FLEXIBLE
Drilling Jackets Ships Catenary Cables
Production Platforms Barges Chains
0il Storage Tanks Semisubmersibles Risers
Caissons Buoys TLP Tendons

TLPs Marine Hoses
Articulated Buoyant Towers
Guyed Towers4

1. Fixed structures may be piled or gravity type.

2. Fixed or floating structures may be rigid or non-rigid. The non-
rigid structures will undergo small deflections or displacements
under environmental loads.

3. Floating structures are usually moored in place in operational mode.

4. Strictly speaking, guyed towers do not belong to this category; but
its analysis is similar to the others in this category.




1.0 INTRODUCTION

The marine and offshore structures and their components may be classified
into three broad categories: fixed structures, floating structures and
flexible structures. Table 1.1 shows these three classes of structures.

The fixed structures in the open ocean are held in place by their weight
or by piling. Generally, jacket type structures consisting of a large number
of tubular members in various planes are held in-place by piling. Many such
structures may be seen in the Gulf of Mexico. On the other hana, large-
volumed production structures made of concrete and steel that exist in the
North Sea are gravity-type structures,. The weight of these structures
provides sufficient bearing pressure to overcome sliding or overturning due to
environmental loads, thus fixing their position.

There are two primary types of floating structures. One type is powered
to move from one location to another and is used to transport materials across
bodies of water. Examples of this type of structures are ships and barges.
The other type of floating structures is mechanically connected to the ocean
bottom or moored in place for use in offshore operation such as in the
production, processing and storing of oil., Such structures may be articulated
towers, semisubmersibles, tension leg platforms (TLPs), etc.

Fixed and floating structures may be rigid or non-rigid. Large struc-
tural components are considered rigid for the analysis of wave forces and
motions. Long members of small cross sections, e.g., in jacket platforms may
undergo deflections or displacements which are substantial and should be
considered non-rigid. An articulated tower may also experience natural period
vihrations in higher vibration modes than the rigid body motion. These
members are treated as non-rigid in the response calculation.

The third type of structures, namely, the flexible structures undergo
large deformations which must be taken into account when being analyzed. It
may be important to update the external forcing function on these structures
based on their displaced configuration. Examples of these structures are
risers, TLP tendons, catenary lines, hoses, etc.

Because of the nature of these flexible structures, the nonlinearities in

the design analyses appear in different phases ana are sometimes typical of




the structures in question. On the other hand, certain types of
nonlinearities are common to most of these structures, depending on the
environment experienced by them.

This report discusses the common types of nonlinearities (Chapter 2)
encourtered in the design of offshore structures. The types of nonlinearities
are arranged in the order in which they may enter into the analysis of a
structure, Applicability of these nonlinearities to the types of structures
included in Table 1.1 1is discussed. Examples of the nonlinearities are
presented from which the importance of the nonlinear terms may be assessed.

The main thrust of the present report is the extreme value analysis of
nonlinear systems relevant to offshore or marine structures. This area is
relatively new, but progress in this area in the last several years has been
rapid and steady. Because of the complexity of the problem, the extreme value
analysis of nonlinear systems makes approximate assumptions in order to make
the mathem.tical problems tractable ani fit one of the known extreme value
analysis methods. Chapter 3 discusses various probabilistic methods and
distribution functions used in predicting short- and Jlong-term extreme
response values for an offshore structure. Most of the nonlinear systems
which appeared in Chapter 2 are addressed here.

The applicability of the various approximate methods in nonlinear extreme
value analysis 1is discussed in Chapter 4. Some of the assumptions and
limitations of these techniques are summarized. Based on this evaluation,
consistent methodology applicable to the probabilistic approaches is provided
in Chapter 5. As will be clear from the discussions in the earlier chapters,
a single methodology may not be appropriate for evaluation of all systems.
Therefore, based on certain input parameters depending on the types of
nonlinearities, different methodologies and formulations are recommended.
Moreover, because of the cost and schedule constraints of this contract,

several recommendations are made for possible future work in this area.




2.0 TYPES OF NONLINEARITIES

The nonlinearities enter into an offshore structure analysis at various
phases. The first and foremost of these is the environment itself. In
describing the environmental conditions that influence the offshore
structures, nonlinear theories are often needed. For example, waves arr often
nonlinear and require a mathematical series expression which depends on
various wave parameters (e.g. wave height) in a nonlinear fashion. In
describing the effect of the environment on the structure, the external
loading may become nonlinear. Examples of such nonlinearities are current
load, wind load and wave drag load. The response of the structure resulting
from the environmental loads may be nonlinear due to nonlinear damping, for
example.

Let us, at this point, explain what is understood about a nonlinear
system and how it differs from a linear system.

2.1 DEFINITION OF NONLINEAR SYSTEMS

Consider a nonlinear system. If y(t) is the response at a given time, t,
that is single valued and nonlinear due to an excitation x(t) at the same
time, t, then

y(t) = gqlx(t)] (2.1)

where g(x) is a single valued nonlinear function of x. The system g{x) is

nonlinear if

g(al Xl + a2 Xz) * al g(Xl) + as g(Xz) (2.2)

where aj; and ap are arbitrary constants. This system is considered a “zero
memory" system, meaning that the response of the system does not depend on the
past value of the excitation., If the system is a constant parameter nonlinear
system and if the excitation x(t) represents a stationary random process, then
the response y(t) will also be a stationary random process. In this case, the
correlation function of the output, and between input and output are given by




ELg{x(t)} gix(t + 1)}] (2.3)

—
~

~
]

Ely(t) y(t + 1)1

(1) = EDx(t) y(t + 1)) = E[g{x(t)} gix(t + 1)}] (2.4)

R

Xy
where R refers to the correlation at a time lag, 1, and E refers to the
expected value., Examples of zero memory nonlinear systems that are often
found in the offshore structure analysis are

e Square-Law System: y = x2

e (Cubic System: y = x3

© Square-Law System with Sign: y = |x]|x

In this section, we shall describe the various types of nonlinearities
that are encountered in the marine and offshore structure design. The
subjects are introduced in the order mentioned at the beginning of this
section, First of all, nonlinearities encountered in describing the
environment will be described. Then the external locading from these
environments that are nonlinear will be discussed. Finally, the responses
from external loadings that are nonlinear will be addressed. It should be
noted that the design extreme value analysis should properly account for these
nonlinearities.

2.2 NONLINEAR WAVES AND WAVE SIMULATION

In computing the wave loads on the components of an offshore structure, a
suitable wave theory must be chosen based on the wave parameters. Numerous
water wave theories have been developed which describe the kinematic and
dynamic properties of the water particles at or below the free surface of the
wave profile. Although the ocean waves are random in nature, the wave
theories describe wave profiles that are regqular and periodic in nature.
There are three basic parameters that are used in describing all wave
theories: water depth, wave height and wave period.

The linearity of waves 1is determined by the wave height or the wave
slcpe. The simplest and most commonly used wave theory is known as Airy
theory which is linear with the wave height (hence, also called the linear
theory). Because of the linearity of the Airy theory with the wave height,




the structural response obtained using this theory is often quite straight-
forward, even though not necessarily linear., This is the theory that is
almost exclusively used in the extreme value analysis of responses, and forms
the basis for the latter chapters,

The free <curface boundary conditions are linearized in describing the
linear Airy wave theory. Therefore, it is not possible to accurately predict
the statistical and spectral properties of particle kinematics in the free
surface zone. Anastasiou, et al. (1982) derived the probability density
function of particle kinematics in the free surface region, which is correct
up to the second order. The wave loads in the free surface zone on a vertical
cylinder were computed to demonstrate the nonlinear properties of the particle
kinematics.

However, in many physical situations the linear theory is not adequate to
accurately describe waves. In this case one has to resort to other theories
to match or at least approach the physical data. Besides the linear theory,
other commonly used nonlinear theories in the design of offshore structures
are (1) Stokes higher order theory [Skelbreia and Hendricksen (1960)], (2)
cnoidal theory [Weigel (1960)] and (3) stream function theory [Dean (1965),
(1970) 1.

To offer an example of the differences among theories, Airy linear theory
provides an expression for the horizontal water particle velocity as

_ mH cosh ky
U = = S d €08 (kx = ut) (2.5)

whereas Stokes second order nonltinear theory expresses the same parameter as

u= THCOSN kY (o5 (kx - wt) + g2 (T )2 COSNEKY cos p(kx - ut)  (2.6)

sinh kd
where H = wave height, T = wave period, d = water depth, y = vertical
coordinate of particle, k = wave number (= 2a/L, L = wave length),

x = horizontal coordinate of particle, w = wave frequency, c = wave celerity,
and t = time, The first term on the right hand side of Eq. 2.6 corresponds to
the first order theory and is linear with the wave height., However, the
second term is proportional to the square of the wave height (or wave slope).

Similarly, the horizontal water particle velocity of an Nth order stream




function theory is given in a series form with terms up to N as follows:

nk cosh (2n-=1)ky [X(2n-1) cos(2n-1)kx + X(2n) sin(2n)kx] (2.7)
1

u:-
n

[

in which X(n) are the coefficients of the stream function. The statistical
distribution properties of nonlinear waves have received some attention in
recent years which have been discussed in Chapter 3.

The applicability of the wave theories may be described by two
nondimensional parameters, d/gT2 and H/gT2 based on the three basic wave
parameters, d, H and T. This is described by the regions shown in Fig. 2.1.
The limits of validity of the various theories are based on how well the free
surface boundary conditions are satisfied, although there has been limited
experimental verification. For this reason, in using this chart, one need not
strictly adhere to the boundary lines in selecting a theory. In fact, the
linear theory has been shown to work quite well in predicting structure
responses well beyond its analytic limitations,

These wave theories are used in computing the response function of an
offshore structure, High order deterministic wave theories are used
extensively in the design of offshore structures despite their inability to
model the randomness of a wind generated sea. The extreme values of responses
(1inear and nonlinear) are predicted invariably in linear random waves. For a
linear system this procedure is straight-forward with the use of a wave energy
spectrum model as will be described in the next chapter. For a nonlinear
response function, the solutions are often obtained in the time domain. This

requires the simulation of a time series from tne energy spectrum model.

The random waves in the ocean cannot be described by a theoretical
model. They are generally described by their energy density spectrum., Often
a mathematical formula is used to describe the energy density spectrum of an
ocean wave. A commonly used form is the Pierson-Moskowitz spectrum given by

5 2 J° -4
S(w) = TE-HS ZT:I exp [-1.25 (w/wo) ] (2.8)
0
in which S{(w) 1is one-sided (i.e. 0 < w < =) energy spectral density,
Hg = significant wave height and uy = peak frequency corresponding to the
energy spectral peak.
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While the above form of the energy density spectrum may be used as a
modified two parameter spectrum having Hs and uwy as independent parameters,
the P-M spectrum is a one-parameter spectrum of a fully-developed sea in which
Hg is related to ug by the relationship

2
Wy HS
g = 0,161 (2.9)

Thus, given a significant wave height, the peak frequency can be determined
and vise versa. Recently, Buckley (1986) analyzed ocean wave data obtained
from measurements at a platform in the Gulf of Mexico, NOAA data buoys, Navy
SOWM data and data from Canadian and Great Lakes waters. Based on the
significant wave height and peak period of this set of data, an empirical
boundary describing the limiting steepness was obtained as

“o s

= 0.306 (2.10)

which is about twice that prescribed by the P-M spectrum.

For a frequency domain analysis, these spectrum formulas (e.g., Eq. 2.8)
are used directly. A wave profile is simulated from such a spectrum for a
time domain analysis. One of the straight forward methods of simulation of
the time series is the linear superposition method of dividing the energy
density spectrum into several slices of width, Aw. Then the wave height
represanting the energy under these slices is given by the formula

Ho(w) = 2 V25(u) &m (2.11)

where w; corresponds to the central frequency of the slice. The corresponding
period is given by

T, - 2—1" (2.12)
This, then, gives the component of the wave representing the frequency
interval, i, given by the wave heioht - period pair. (Hj, T1)° The phase
angle is assumed uniformly distributed over (0, 2%) and is chosen randomly.
Then the profile of the random wave is obtained by adding all the components
of the wave thus generated




H.

n(x,t) = —%—cos(kix - uﬁt + wi) (2.13)

e Z

i=1

= wave length at a frequency w; and N = number of slices

where kj = 2n/Li, Li 5

made in the wave spectrum (typically 50-200).

The random wave profile produced by this method is Gaussian only in the
limit as N extends to infinity. In order to avoid this problem [Tucker, et
is by

(instead of y4) which are functions of the cosine and sine component of (kjx -

al. (1984)], Eg. 2.13 may be rewritten in terms of two coefficients, a

wit). These coefficients are then assumed to be randomly distributed in a
Gaussian form to ensure n to be Gaussian. It has been shown [Elgar, et al.,
(1985)] that the group statistics of the wave profiles by either of the two
methods produce similar results,

In a deterministic approach the maximum wave cycle in a random wave field
is often used to obtain the design response value. Such cycles are generally
highly nonlinear with sharper crests and require higher order wave theory

(e.g. stream function theory) to describe the wave cycle.

A method of simulation of nonlinear random seas was provided by Hudspeth
(1975). The method involves inverting the Fourier wave amplicude spectral
components by a Fast Fourier algorithm. Second order corrections are made to
the 1linear random sea surface. These nonlinear components appear at
frequencies that are sums or differences of the linear frequencies and include
the product of the linear spectral components. The nonlinear random sea
surface is derived from a linear simulation. The kinematic field, i.e. water
particle velocity and acceleration are obtained by a digital linear filtering
technique.

2.3 WAVES PLUS CURRENT

When current 1is present along with the waves, the current is often
considered steady and its effect is linearly superimposed on the effect of the
waves on responses. It is sometimes found that the combined effect of waves
and current on the responses may be different from their individual effects
linearly superimposed because of wave-current interaction. This s
particularly true for a moving structure for which the motion may become quite

complex and nonlinear even for }inear waves. In addition, however, when




current is in the direction of waves there are additional changes experienced

by the waves.

On encountering a current, the characteristics of a wave change. In
particular, in the presence of current the wave height and the wave length
experience modification, If the current 1is 1in the direction of wave
propagation, the wave slope decreases and its length increases. O0n the other
hand, if the current opposes the wave, the wave slope increases in magnitude
and the wave length shortens. These changes take place due to the interaction

between the waves and current.
In deepwater in the presence of a uniforim current the wave number, k, is

related to the wave freguency, w, by the generalized dispersion relationship

K = 4@2/9
[1+ (1 + 8Uu/g)t/272

(2.14)

where U may be positive (in the direction of wave propagation) or negative
(opposite to the wave direction), Note that the expression in Eq. 2.12
reduces to the deepwater dispersicon relation (k = u?/g) in the absence of
current (U = 0). When U is positive the value of k is smaller so that the
wave length is larger. Likewise when U is negative, the value of k increases

and the wave length is smaller than the no-current case.

The wave-current interactions in a random wave field show that the wave
energy density spectrum likewise undergoes profound changes. Under the action
of a steady current in deepwater, the wave energy spectrum takes the form

S* (o) = T 392)1/24[i(:)(1 TR (2.15)
g g
When the current speed is negative there is a cut-off frequency in the surface
wave spectrum given by the condition 1 + 4Uw/g = 0 beyond which no waves
exist. Since the phase speed, ¢ (= w/k), of gravity waves is a monotonically
decreasing function of wave number and frequency, the influence of current
will be predominant at the higher wave number range, Furthermore, the
contribution from the higher wave number range dominates the wave surface
slope whereas the current changes the surface slope pattern drastically. This
is demonstrated in Fig. 2.2 in which the ratio of S*(w)/S(w) is plotted versus
w for different wvalues of steady current with and against the wave
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direction. It 1is seen that the effect of current at the low frequency is
small. At higher frequencies the effect of current increases energy level
when it opposes waves and decreases when it is with the waves. This is
further illustrated in Fig. 2.3 where S$*{(w) is shown versus w. The wave
energy density spectrum, S(w) represents a P-M spectrum for a wind speed of
Uy = 20 miles/hr. The spectra of fluid particle velocity and acceleration at

mean water level are given by

= W8 S* () (2.16)

w

*

—
&

~
|

and
S *(w) = o} S*(w) (2.17)

Figure 2.4 shows the effect of wave current interaction on the water particle
velocity spectrum, S* (w) for different current speeds of U = +3 ft/sec.

Spectra of water particle acceleration exhibit similar characteristics.

2.4 NONLINEAR FORCE

It is clear from the previous sections that nonlinear waves will produce
nonlinear responses even if the transfer mechanism is linear. On the other
hand, for a linear wave the responses are nontinear if the transfer function
is nonlinear. Thus the responses of a marine structure will be nonlinear if
the exciting forces arising from (linear) waves are nonlinear. One of the
most common typas of dynamic nonlinearity encountered in the exciting forces
is due to the drag force. The nonlinear steady drag force due to wind and
current is well-known, Extending this form to the case of waves, adding the
inertia component and taking into account of the reversal of force in a wave
cycle, an empirical formula was proposed about 2% years ago which i< commonly
known as the Morison equation.

2.4,1 Morison Equation

The Morison equation was developed by Morison, et. al. (1950) for
describing the horizontal forces on a vertical pile. It is written in terms
of the water particle velocity and acceleration components as

f=kyt +kylulu (2.18)

10
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in which

ky = p Cy {{ D2 (2.19)
and

ky =7 o Cy D (2.20)

and f = hydrodynamic force per unit length of the vertical cylinder, p = mass
density of water, D = cylinder diameter, u and 0 = water particle velocity and
acceleration, and Cms Cp = inertia and drag force coefficients respectively.

This empirical force model has been the most wideiy used method in
determining forces on small diameter vertical cylindrical members in an
offshore structure. The computation depends on a knowledge of the water
particle kinematics and empirically determined coefficients. Extensive
research effort has been expended in the past in obtaining the values of the
force coefficients, Cy and Cp. In this area, the most noteworthy laboratory
results on Cy and Cp were produced by Sarpkaya [see Sarpkaya and Isaacson
(1981)] from his U-tube experiments. His data show that these coefficients
are functions of the Keulegan-Carpenter number (KC), Reynolds number (Re} and
roughness parameter of the cylinder. The Keulegan-Carpenter number is a
measure of the water particle orbital amplitude with respect to the cylinder

diameter and is defined as KC = uoT/D where u, is the amplitude of the water

]
particle velocity. Typical results for Cy and Cp from Sarpkaya's experiments
for different values of KC are shown in Fig. 2.5. His analysis shows that for
smooth cylinders, the value of Cp approaches 0.65 and Cy approaches 1.8 at
higher values of Re. In waves, these values from pure 2-D oscillatory flow
should probably be considered an upper limit. Limited correlation of these
data in waves has been made. One such correlation in a limited range of Re
was made by Chakrabarti (1981) in Fig. 2.6. Note that the correlation is
quite good except for Cy near KC = 10 and at higher values of KC where
Chakrabarti's data are sparse and need further verification,

The Morison equation has been used in the application of both regular
waves and random waves. In a design, the coefficients in the random waves are

often c(hosen from the regular wave tests and assumed constant with
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frequency. The coefficients have generally been derived in the laboratory in
oscillating motion or in regular waves. The data from ocean tests have
produced large scatter which does not validate the applicability of the
Morison equation., In a test with a vertical cylinder in a wave tank, Vugts
and Bouquet (1985) measured the forces and corresponding water particle
kinematics at a smail section of the cylinder in random waves. Then they
considered these signals as output and input signals respectively, and applied
the measurements to a general transformation model consisting of linear and
nonlinear paths. They chose four models, one of which corresponded to the
Morison equation. The Morison equation was found to be the best suited,
giving a good match between the two signals. The inertia coefficient was
found to be reasonably con~tant for a given frequency spectra while the drag
coefficient decreased in value with frequency.

The Morison equation has been extended to inclined cylindrical members of
an offshore structure in terms of a normal velocity component, w, and a normal
acceleration component, Q. In this case, the force is written as a vector
quantity

1h

= ky W+ kDIEI! (2.21)

The force vector per unit length of cylinder may be decomposed into its three
components along 3 axes XYZ by writing

W = uxl + uyi + uz£ (2.22)
and
W=+ ij+ ik (2.23)

It has been shown through experiments [Sarpkaya (1984), Garrison (1985)] that
the coefficients Cy and Cp for an inclined cylinder may be obtained as those
values from the vertical cylinder tests.

The expression for the inclined cylinder, Eq. 2.21, is general enough
that the forces on a small cylinder in any plane may be obtained from it.
This formula is applicable to derive forces from various types of offshore
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structures and structure components. Some of these are jacket structure,
risers, tendons, articulated tower, legs of semisubmersible and guyed tower.
It should be noted, however, that the applicability of Eq. 2.21 to a randomly
oriented cylinder needs further investigation.

The regions of applicability of the Morison equation and, in particular,
the areas of drag and inertia force predominance may be discussed in terms of
the chart in Fig. 2.7. The chart has been obtained by examining the ratio of
the maximum drag force, fp , to the maximum inertia force, fIO, for a cylinder
in linear waves. Note that

Dy G

?I— = ;?E_ (KC) (2.24)

0 M

where KC is the Keulegan-Carpenter number. Assuming Cp = 1 and Cy = 2, the
percentage of drag to inertia may be established. The limits are stated in
terms of the KC number, and the diffraction parameter, kR = wD/L, R = cylinder
radius. According to this chart the nonlinear force due to the drag effect
tends to become important when KC becomes greater than 2. The wave force from
the Morison equation becomes mostly drag for KC > 90,

By virtue of the form of the drag term, the drag force component is
nonlinear in the time series even if the water particle velocity is
sinusoidal. On the other hand, the inertia term is linear if the sinusoidal
water particle velocity (e.g. by linear wave theory) is used for the (local)
acceleration. [If the local horizontal acceleration is replaced by the total
horizontal acceleration including convective terms, the inertia term has a
nonlinear form.

g: = %%’* u %% +v %§-+ W %% (2.25)
in which u, v and w are the components of the water particle velocity vector
in a rectangular Cartesian coordinate system. Wave force data reduced on the
basis of nonlinear (irregular) stream function theory dependent on the
measured wave profile and local measured forces have shown satisfactory
correlation with measured total forces [Chakrabarti (1980)].

In addition to the extensions of the Morison equation stated above,
several modified forms of the formula are used in the offshore structure
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design. These have to do with combining different environmental effects into
the formula. The two most important of these are current and structure
motion. Current can be applicable to all three types of structures while the
structure motion is important only for a floating or flexible structure.

2.4.2 Fixed Cylinder in Waves and Current

When current is present with waves, the formula for a fixed structure is
written in terms of the total velocity including & steady current, U, and an
oscillatory component, u as

f = ky u o+ kp lut U] (uztV) (2.26)
where -U represents uniform current opposing the direction of wave propaga-
tion.

However, it is sometimes argued that a single drag coefficient does not
adequately express the total drag force in the presence of waves and
current. An alternate form of the Morison equatici has been suggested

£ =ky 0+ Ky Julu+ Ty U2 (2.27)

M

where Fb is defined in terms of a steady drag cuvefficient, Cb as
K, =0T, 0 (2.28)
D-Z°"% .

The Keulegan-Carpenter number ana the Reynolas number in a wave-current
field are defined as

(uo t U)T
KC = 5 (2.29)
(uO + U)D
Re B v t———————— (2030)
Y
where ug = amplitule of u and v = kinematic viscosity of water.

It should be emphasized that the values of the hydrodynamic coefficients
in the wave currcnt fic'd are expected to be different from those in waves
alone, Unfortunately, such data are limited, Iwagaki, et al. (1983)
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presented values of Cyms Cp versus KC from a combined wave-current test. These
values shown in Fig. 2.8 are not much different from the wave alone data.

Because of the difficulty of generating waves on a steady current an
alternative and often considered equivalent approach is taken, Sarpkaya
et al, (1984) had adopted one such method in his U-tube in which the cylinder
was moved steadily in an oscillating flow field. They used the relative
velocity model (Eq. 2.26) to derive Cy and Cp. Results obtained from such a
test on Cq and Cp are shown in Figs. 2.9-2.10. Reference may be made to
Sarpkaya's (1984) paper for other similar data.

Moe and Verley (1980) took a slightly different approach. They
oscillated a horizontal cylinder sinusoidally in a uniform current field and
measured forces on the cylinder. They used the three-term Morison equation,
similar to Eq. 2.27, with the exception that u is replaced by X, U by x and
ky by kp, where x 1is the amplitude of the oscillating cylinder and

kA = pCAﬂDz/4. . The coefficient, Cp» 1s defined as the added mass
coefficient for the oscillating cylinder and is related to Cy by Cy = 1 + Cp
for a buoyant cylinder. They derived the values of Cb ,and Fourier averaged
Cp and Cp. The coefficients Cp and Cp showed complex dependencies on the
amplitude parameter ; = xO/D and the reduced velocity,

Vg = UTg/D (2.31)

where Ty = period cf cylinder oscillation. The plot of 5b VS. ; for various
values of Vg is shown in Fig. 2.11.

From the above tests it is obvious that the values of the hydrodynamic
coefficients are directly related to the form of the force equation used,
e.g., independent flow field or relative velocity model. The advantage of the
three-term Morison equation 1is that the steady drag force may be easily
separated from the oscillating part, e.g., in the analysis of a structural
dynamic probiem. However, it seems simpler to use the relative velocity model
since it means choosing and working with one less coefficient.

2.4.3 Oscillating Cylinder in Waves

When a rigid structure is free to move in waves, the effec. of the
structure motion can be combined with the wave effects to form
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f=ky-kyx+ kD|u|u - kélxix (2.32)
where kA=pCAﬂD2/4, ké = % P Cb D, C4 = a"ded mass coefficient and Cb = drag
coefficient due to structure motion defined separately from the fluid dynamic
drag. This form is known as the independent flow fields; a far field due to
the wave motion and relatively unaffected by the structure motion, and a near

field resulting from the structure motion. The values of Cy and Cp may be

D
from the experiments of an oscillating cylinder in otherwise calm water. The

obtained from wave experiments while the coefficients Cp and C| are derived
values of the KC and Re numbers are obtained from the respective velocities
and periods.

When the forces are written in terms of the relative motion, single
coefficients for the inertia and drag are assumed to apply. Thus, the form of
the force term including the structure inertia due to its acceleration,

(m; term) is

£k, (- x) + kplu = X[ (u = %) (2.33)

This model is known as the relative velocity model. It requires fewer
coefficients than Cy. 2.32, and has been used extensively in the past, e.qg.,
to evaluate the stochastic dynamic response of offshore platforms, motions of
articulated towers, etc., In this case, the Reynolds number and KC number are
defined in terms of the relative velocity, Ve, aS

v T v A0
ke =ror Re = LU (2.34)
D v
where v, = amplitude of Vp and T = combined period of v.. Note that v, need

not be sinusoidal even if ¢ and R are,

It is sometimes convenient to separate the inertia coefficient from the
added mass coefficient, As an example, the diffraction-radiation theory
provides different values for the force and added mass coefficients. There-
fore, a third alternative form of the modified Morison equation is written in
terms of the relative velocity, and the acceleration terms are separated.

16




f=k, 0~k

" X + kplu = &[(u - %) (2.35)

A

The question arises as to which is the more appropriate form of the
modified Morison equation for a structure moving in waves. Since there is a
variety of offshore structures, e.g., jacket platforms, articulated columns,
risers, tension leg platforms, that fall under this category in which the drag
effect is important, it is worthwhile to discuss the appropriate and useful
applications of Egs. 2.32, 2.33 and 2.35. Because the original Morison
equation is empirical, it is not possible to justify its extension to other
cases and to discuss which one is more "correct". Obviously, coefficients
derived from one of these formulations can be justifiably used in the
application of that form only. However, experimental data in this area is
scarce. An attempt to investigate this area was made by Chakrabarti et al.
(1983-1984) through model testing. An articulated column was tested in three
modes with the same setup: (1) fixed in waves, (2) harmonically oscillated in
still water, and (3) free to move in the plane of the waves. The amplitude of
velocity of the structure was comparable to the water particle velocity. The
test showed that the relative velocity form of the Morison equation is
appropriate, even though the agbservations were limited, Considerable work is
needed to determine the appropriate values of Cy and Cp in the relative
velocity model in waves,

An experiment with a submerged articulated tower was performed recently
by Dahong, et al, (1982) in which the motions of the tower both in-line and
transverse to the direction of waves were measured. From these measurements
the values of Cy, Cp from a relative velocity model (Eq. 2.33) and lift
coefficient, Cp» were derived. The mean values of these coefficients versus
KC are presented in Fig., 2.12,

The region of applicability of the relative velocity and independent flow
fields model may be discussed in terms of reduced velocity, Vr (defined by ug
instead of U in Eq. 2.31) and an amplitude parameter, X . The limits of
applicability are given in Fig. 2.13. The x-axis is the reduced velocity, Vp
while the y-axis is the KC number based on the water particle velocity.

For compliant structures, e.g. articulated towers, KC, VR and X are
relatively large. For conventional jackets, KC and Vp are large, but X is
smalli. In both cases the flow is quasi-steady and the periods of oscillation
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of the structure generally coincide with the periods of the incident waves.
The use of the relative velocity term in the computation of the drag force may
be appropriate in these cases.

Two other cases may be considered. High KC and small Vp values cor-
respond to a resonating drag dominated structure, i.e. a high-frequency
cylinder oscillation in a slowly oscillating external flow. Examples of this
case are vibrating structures at high resonant frequency such as riser cables,
TLP tendons, etc. Similarly, low KC and high Vp values mean a low frequency
cylinder oscillation in a high frequency flow oscilliation. This second case
includes the slowly-oscillating drift motions of a moored structure, e.g.,
ships, semisubmersibles, TLP surge, floating caissons, etc. In these two
cases, the concept of relative velocity applied in Egs. 2.33 and 2.35 is
highly suspect and the independent flow fields model, Eq. 2.32, is ap-
plicable. The main reason for this choice is that the two motions are quite
different and relatively independent of each other. Thus, the smaller motions
are capable of creating local wakes independent of the larger motions. The
relative velocity model accounts for their combined effect, thus ignoring the
smaller motions. The two drag coefficients may be chosen from the two types
of test data, one from a fixed cylinder in waves and one from an oscillating
cylinder in still water (or alternately, oscillating water past a stationary
cylinder). The KC and Re numbers are computed from the individual velocities
for this purpose.

A simple technique may be employed in determining which of the two
models, relative velocity and independent flow field, is applicable in a
particular application. When the two flows are comparable, one influences the
other and the relative velocity model is applicable. The independent flow
fields model may be used when one of the velocities is large compared to the
other. The applicable coefficients are chosen based on the test results
obtained from the corresponding models.

2.4.4 Oscillating Cylinder in Waves and Current

For a structure free to oscillate in the presence of waves and current,
the Morison equation is modified as

Fmky 0=k x+kyJugU=2(utU-2g) (2.36)

A
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Other forms of Fg. 2.36 may be written as before and have been used in the
past. These forms are applicable to moving structures in waves and current
whose member sizes are such that the hydrodynamic drag force is significant.
Even though the equation is written to define a force term, in a motion
analysis, the terms from Eq. 2.36 appear on both sides of the equation of
motion. For example, the first term on the right hand side is a forcing
function. The second term is an inertia term and belongs to the left hand
side of the equation of motion. The third term includes both a force term and
a damping term coupled together., If this term is linearized, then the two
components may be uncoupled into two terms belonging to the two sides of the
equation. In a time domain analysis it is treated as a damping term.

Test results under this condition, however, are almost nonexistent.
Considerable work is needed to achieve insight into this most complex
problem. The force and the motion are dependent upon the water particle
kinematics as well as the velocity and acceleration of the structure itself.
Because of the lack of data in this area, the hydrodynamic coefficients for
the analysis of such problems are chosen from studies similar to those
described in the preceding sections.

2.5 STEADY DRIFT FORCE

The second-order theory for the steady drift force is based on the first-
order diffraction-radiation theory and is applicable to regular waves. The
regular wave results are then applied to wave groups and irregular waves. In
addition, a steady drift force develops from the drag force term at the free
surface as well as in current.

In the following section, the steady drift force due to viscous flow is
discussed. It is generally applicable to structures that have members in the
drag-dominated areas (refer to Fig. 2.7), e.g., in jacket structures, TLP
tendons, etc.

2.5.1 Steady Drift Force Due to Viscous Flow

The forces on a small vertical cylinder due to linear waves may be obtai-
ned from the Morison formula by substituting u(t) = ug coswt in Eq. 2.18.
Then, noting that u(t) = -w uy sinut ,
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f = -kM w U sin «t + kD ui lcos wt|cos at (2.37)
This form of the wave force at a submerged location has a zero mean over one
wave cycle., If the cylinder is allowed to oscillate harmonically in waves
with a displacement amplitude of x, at a phase angle of o with respect to the
wave so that x(t) = x5 cos{ut + o), then the relative velocity model
(Eq. 2.33) gives

f o= -ky oV sin(ut + ¢) + kp v2 |cos(ut + ¢)|cos(ut + ¢) (2.38)

in which the quantities V and ¢ are defined as

- 2 \ 1/2
V = [uo + (wxo) -2 w u, X, €0S o] (2.39)
and
X sin a
6= tanH( —2 ) (2.40)
0 0

The expression in Eq. 2.38 also has a zero mean. Comparing Egs. 2.37 and
2.38, it is clear that for a moving structure in waves, u, should be replaced
by V and ut by ot + ¢. Hence, the subsequent derivations are done only for a
fixed cylinder,

Note that there are two areas that will produce a non-zero mean viscous
drift force. When current is present along with waves, a mean drift force is
generated from the drag force at any elevation of the cylinder. Moreover, due
to the changing free surface of the waves at the cylinder, the force will
produce a mean drift at the still water level (SWL).

In the presence of current, U, the relative velocity drag force may be
broken up into two simpler expressions depending on the relative magnitude
between U and uy. For |U]| > ug,

fp = tkp [l + %-ug (1+cos 2ut) +2 U uy cos ut] (2.41)

where the negative sign applies to the case of current opposite to the wave
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direction, and for [U] < uj

fo = kD CUZ +-% u% (1 + cos 2ut) + 2 Uu, cos wt] sgn(u + U) (2.42)

D

in which sgn is a sign function and takes on values of tl depending on the
sign of u + U,

When normalized by kpu 2 the mean viscous drift force for unit submerged

O ’
Tength of a vertical cylinder is given by the following expressions. Defining
the gquantity, ¢, as

Y = cos™1 (- %—), 0O <y< (2.43)
0
we have
i} 1 Uu 2 Ju]
=t iyt (g )] for 1=k 51 (2.44)
Kp Yo Y 0
and
T
D , -% {{3—)2(&&- - )+ 4(—3—-)57’n v+ (4 -.2’1+2lsin 2y)} fO#J—S-L< 1
kD uO 0 0 . 0

(2.45)

where the bar denotes average value over a cycle. The numerical values of the
normalized force are presented in Fig. 2.14 as functions of U/u, in the range
of -2,0 to 2.0, Note that the curve is asymmetric about U/u, and becomes
parabolic at higher values of U/uo. A few experimental data points at low
current values are also shown in this figure.

In order to obtain the expressions of the free surface force on a
vertical cylinder, use of the Morison equation 1is made. Current is not
included in this derivation since current is generally considered present up
to the still water level in the application of the Morison equation. The
force per unit length of the cylinder due to wave only is given by Eq. 2.18.

According to Tinear theory, the maximum velocity, uy S given as

o, - g cosh ky (2.46)

0 « cosh kd
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TABLE 2.1

VALUES OF Cy AS FUNCTION OF kH

kH Cy kH Cy
0.05 1.0003 0.10 1.0013
0.15 1.0030 0.20 1.0053
0.25 1.0084 0.30 1.0120
0.35 1.0164 0.40 1.0215
0.45 1.0272 0.50 1.0337
0.55 1.0409 0.60 1.0487
0.65 1.0574 0.70 1.0667
0.75 1.0768 0.80 1.0877
0.85 1.0994 0.90 1.1118
0.95 1.1251 1.00 1.1392




in which g = acceleration due to gravity, k = wave number, H = wave height,
d

water depth and y = elevation from bottom. Assuming that the linear

WREory Can te opplicd up to the froc surfoec, the totel furce is obtained frem
the integial
d+n
F=1/] fdy (2.47)
0
which provides
_ _, GH sinh k(d + n) . 1 gkH 2
F=ky 7o ka —— s1" ot * 7 &y 35-cosmia )

[ {(d+ n)+ sinh Zkzéd + n) ] lcos wt|cos wt (2.48)

The ipertia part of the force has a zero mean. The drag force yields an

average value over one wave cycle.

Fo_kH)S

+C
2kD g/k2 127

[ 1

STIWiT (kH) coth 2kd ] (2.49)

1
The numerical values of Cy are shown in Table 2.1 as functions of kH. Note
that Eq. 2.49 1is due only to the free surface variation even though the
integration in Eq. 2.47 is carried out over the entire submerged length. The
mean value, however, is a function of the water depth.

Since the linear theory is applicable for infinitesimal wave amplitudes
and is valid up to the SWL, use of the expressions for the water particle
kinematics up to the free surface of a finite wave is questionable.
Therefore, “"stretching" formulas have been suggested in finite water depth by
which the water particle kinematics at the wave crest and the wave trough
assume the same vaives. If one of these stretching formulas is applied, the
water particle velocity is written as

L gk cosh ky (-J—g—n)
2w cosh kd

cos ut (2.50)

and U is expressed in terms of u, and w as done earlier, then the total force
up to the free surface is given by

e S - 1
F Ky %a-(d + n) tanh kd sin ot + kD(

kH 2
5 )

2w cosh kd
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(d + n) 1+ EiﬂgE§59 1lcos uticos ut (2.51)

fne mean value of F is obtained on integration as before.

F o (kH)3 ] L

= + (2.52)
2kD g/k2 sinh 2kd = Z2kd

12

Thus, the mean force from the free surface effect of a small vertical cylinder
(where viscous effect is important) is a function of the cube of the wave
height as opposed to the square of it for the potential drift force, as will
be found in the following section.

Note that in deep water, m2 = gk and the expression in Eq. 2.49 approxi-

mates as

T C

7
2k g/k

_ 3
e (L) (2.53)

However, the mean free surface force from Eq. 2.52 approaches zero as tne
water depth approaches infinity. The mean drift force from Eq. 2.53 have bee

plotted in Fig. 2.15, Note that the normalized force depends on kH
approximately as its cube [Chakrabarti (1984)].

2.5.2 Steady Drift Force Due to Potential Flow

For structures that are large, the force is mainly inertial and potential
theory is applicable. The steady drift force is second order and can be shown
to arise from the first-order potential. The contribution due to the steady
drift force from the potential flow about a floating body has four components
which are addressed in the following section.

2.5.2.1 Wave Elevation Drift Force

Consider the extension of pressures above the mean water level to the
instantaneous free surface at the body while the body is in motion. Then the
integration of this pressure around the object at the water line gives rise to
a steady second-order force whose component, F&, in the horizontal direction
is given by
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1 2
Fi = -5 09 i o n dl (2.54)

in which the bar denotes mean value, g = acceleration due to gravity,
¢y = first order wave amplitude at a point on the moving body, n, = direction
cosine, and WL = water line at the body surface.

For a fixed vertical cylinder that extends from the free surface to a
submerged point where there is no wave action, the body may be treated as two-
dimensional and the MacCamy-Fuchs theory is applicable. In this case, the
horizontal wave elevation drift force may be obtained in a clesed torm. The

time-independent steady force component may be written as

2 o
T - B4eg9z 0 R n{n + 1) ] 1 (2.55)
1 n?(kR)3 n=_ (kR)2 i An(kR) An+1(kRj

cylinder diameter (= 2R), ¢ = incident wave amplitude (= H/2),

i

where D
k = wave number, and A,(kR) = Jﬁz(kR) + Yﬁz(kR) s JpsY, = Bessel function of
order n of the first and second kind respectively, and prime denotes

derivative with respect to the argquments,

2.5.2.2 Velocity Head Drift Force

The second term of Bernoulli's equation provides a steady second-order
component when the first-order velocity potential including the diffraction-
radiation effect is used to compute the pressure. Then the steady horizontal

force component may be obtained from the integral

Fo=-sp | ! (v4)% n_ ds (2.56)

in which s = surface of the body and v = first-order velocity vector.

For the fixed vertical cylinder in deep water, the horizontal velocity
head drift force may be calculated using the total velocity potential,

Z ©
2o D . n{n + 1) 2 1
T o= - Pl - 121 (2.57)
2 Z(kR)S n=0 L (kR)C An Ansl

Combining Egs. 2.55 and 2.57 we obtain the total steady force on the fixed

vertical cylinder.
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F, v Fy ) 2
2 3

n(n+ 1) 2 _1
oQCZD m (kR)™ n

2 RAT

-
0 (kR)

(2.58)

|
I

In intermediate waier depths, this force is also a function of the depth.

Numerical values of the wave elevation drift force, ?i , and the velocity
head drift force, Fé , as well as the total steady force due to the total wave
potential 1in the presence of a fixed vertical cylinder are shown in
Fig. 2.16. These quantities are normalized with respect to pggzD and plotted
versus the diffraction parameter, kR. The numerical values correspond to
water depths ranging from d/R = 1 to reasonably deep water, d/R = 5. Note

that the quantity ¥, is positive while Fé is negative over the range of kR

1
considered. Also, the wondimensional steady drift force (Fi + Fé ) approaches

a constant value of 1/3 in deep water at higher values of kR.

For a moving cylinder there are two other components due to the motion of
the body contributing to the total steady drift force.

2.5.2.3 Body Motion Drift Force

The first-order wave force on the body 1is computed at its mean
position. However, the body undergoes motion due to waves and assumes a
differenc orientation at the instant this force is calculated. Therefore, if
a Taylor series expansion about the mean body position is made, the second-
nrder steady horizontal force term takes the following form:

Fy=-o js X« 5 (Vo) n_ds (2.59)

where X = motion vector.

2.5.2.4 Rotational Inertia Drift Force

This term arises because the first-order forces due to the pressure are
always normal to the surface. As the vessel oscillates the direction of these
normals rotate., If the components of these normals in the directions of the
fixed coordinate system are considered, a nonlinear drift load develops.
Then, mathematically, the sccond order drift force contribution assumes the
form
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Fﬁ =X F (2.60)

where E= force vector,

Thus, only the results based on the first-order velocity potential are
needed to obtain the steady second order force. The total steady drift force
is obtained by adding the four components

Fb =F +F,+F;+F, (2.61)

in the direction of surge.

The preceding four contributions arise from the assumption that the fluid
flow is irrotational and the potential theory is applicable. In order to
determine whether the viscous effect is important, calculations may be made to
compute the viscous drag force on the moving body from the drag part of the
Morison equation. For a moving cylinder in surge, this calculation takes the
form

-
1]

kg Ju = x| (u - x) (2.62)

in which x = surge velocity of the cylinder. When this term is extended up to
the free surface above the SWL, a steady component arises which is
proportional to the third power of the wave amplitude. A deep water
approximation of this expression in the absence of motion gives

3

F =3k (5k) ¢ (2.63)

which is comparable to Eq. 2.53 except for the constant C; (= 1 here) and
which may be written in a form similar to Eg. 2.58 as

2c
F_- ?[(kR)(c/R) (2.64)

DQCZD

The effect of the viscous drift force on the cylinder in relation to the
drift force contribution from the potential flow is shown in Fig. 2.16. Con-
sider the radius of the cylinder to be 2 ft. and a wave height of 0.5 ft. for
all wave periods so that ¢/R = 0.125. The value of Cp is considered to be
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1.0. Then, the values of the viscous drift force are as shown in Fig. 2.16,
Note that, in general, the viscous drift force is small compared to the poten-
tial force for all values of kR and increases linearly with kR. At kR = 2,
the viscous effect is about 15 percent of the potential drift force. For
smaller diameter cylinders and higher waves the viscous effect can become more
predominant because of its third order dependence on the wave height.

For a general floating body, it is difficult to discuss the ranges of the
diffraction parameter, kR and viscosity parameter, H/D (or ¢/R) where the
viscous or the potential drift forces are predominant. However, a qualitative
assessment of their relative importance may be made by considering a fixed
vertical cylinder in deepwater. If Z is considered the ratio of the viscous
to the potential drift force, *hen the region may be construc ed as shown in
Fig. 2,17 for different values of Z = 0,1, 1 and 10. The middle curve (Z = 1)
represents equal contribution from the viscous and potential drift forces.
For Z = 10, the potential drift may be neglected just as the viscous drift at
Z = 0.1,

An example of the effect of a nonlinear viscous term on the motion of a
TLP [Kobsyashi, et al. (1985)] is shown in Fig. 2.18. [In this case, steady
drift force as a function of the wave period in regular waves is given. The
solid line represents the computed values based on potential theory. The
dotted line includes the effect of the viscous drift force from the relative
velocity model. The correlation of the experimental data is much better with
the latter results. Moreover, the contribution of the viscous drift force is
much larger than the potential drift force at higher periods (beyond 7.5
secs.) where the ocean waves have much higher energy. Note that for a
structure with small members in large waves, such as a compliant tower (where
Z is closer to 10), Fig. 2.17 shows the drift force to be primarily viscous.

In order to compute the steady wave drift force due to wave groups and
irregular waves, the following procedure is used. The wave energy density
spectrum, S(w), where w = wave frequency, for the particular wave group or
irregular wave is determined. Then, the steady drift force, F} , due to the
wave group or the irregular wave is calculated using the regular wave steady
drift force Fb(w) resulting in the transfer function
2

=4 pgD |

F& wy p

(w) dw (2.65)
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in which w) and w, are the lower and upper frequency limits of the waves.

2.6 NONLINEAR MOTION RESPONSE

A floating structure is connected to the ocean floor in several different
ways. An articulated tower is connected to the seafloor via a universal joint
which allows certain degrees of freedom of the tower. A ship, barge or a
semisubmersible is attached to the seafloor by means of a catenary system
through a turntable so that it can weathervane. In this case the structure
has all six degrees of freedom. A tension leg platform is held in place by a
series of vertical tendons. It is free to surge but has limited heave and
pitcn motion,

In addition to the forcing function, the equation of motion typically
includes an inertia, a linear damping and a restoring force term. The inertia
term includes an added mass term. The added mass coefficient is obtained from
the linear diffraction/radiation theory for a large structure or from the
modified Morison equation for a small member. The limits of applicability in
terms of the diffraction parameter ka have been shown in Fig. 2.7. For ka >
0.5 the diffraction becomes important. The linear damping term generally
comes from the radiation theory as well. The restoring force term arises from
the structure geometry and the type of mooring system. This term is often
nonlinear, but may be linearized over the range of application if the motion
of the structure is small. The catenary system is described in Section 2.9.
The nonlinear viscous damping is often significant and, therefore, needs to be
introduced in the equation of motion of the system in the first-order
analysis.

2.6.1 First-Order Motions with Nonlinear Drag Damping

The problem of calculating exciting forces using the first-order theory
reduces to solving for the total velocity potential, &(x,y,z,t) which can be
written as the sum of an incident velocity potential, ¢1(x,y,z,t) and a scat-
tered velocity potential, ¢S(x,y,z,t). The incident velocity potential, ¢; is
known from the Airy wave theory. The total velocity potential, &, satisfies
Laplace's equation and the appropriate linearized boundary conditions at the
free surface, the ocean bottom and the cylinder surface, as well as the
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Sommerfeld radiation condition. The body surface condition states that the
normal velocity component on the surface is zero. In the boundary value
approach of the problem, on application of this condition, the numerical
problem in terms of the unknown scattered potential reduces to a two-
dimensional Fredholm integral equation in Green's function. The first-order
forces are computed at the mean equilibrium position of the cylinder on the
assumption that the motion is small. The first-order pressure on the
submerged surface of the cylinder at its equilibrium position is obtained from
the first term in Bernoulli's equation,

p=os o () (2.66)

The added mass and damping coefficients associated with the motions of
the body are obtained for the body oscillating harmonically in still water.
The formuiation of tinis probiem is quite similar to the previous one for fixed
structures and uses the same Green's function. The integral equation is
modified by the body surface boundary condition which states that the normal
velocity component of the fluid at a point on the body is equal to the
velocity of the body at that point. In this case, the incident wave potential
is absent and the velocity potential for a particular motion of the body e.g.,
surge, sway, heave, pitch, roll and yaw, oj (3 =1,2, . .., 6) replaces the
scattered potential in the earlier formulation. Once a particular %5 is
known, the in-phase and out-of-phase components of the reaction forces
constitute the added mass and damping coefficients for that degree of freedom.

Considering that the nonlinear damping is important, the motion of the
system may be described by a set of six coupled differential equations of
second-order as follows:

6
- 1 . 2 . .
o [(mp * My X+ Ngpeox + NG D [
- 'I(ujt + a.) _
+ Cjkxk] Fje AR 1,2, . . 6 (2.67)
in which mjk = mass and moment of inertia matrix, Mjk = added mass
matrix, N}k = linear damping matrix, N§k = nonlinear damping matrix,

Cjk = restoring force matrix, and F;, @y, = exciting force vector and asso-
ciated phase angles, i = imaginary quantity and « = wave frequency. The dots
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represent derivatives of the displacements, x,, with respect to the time, t.
The quantities, Fj and aj are obtained from the linear diffraction theory
while Mjk and N}k are results of the corresponding radiation problem. The
restoring force matrix, Cjk is composed of the buoyancy change of the
structure and the spring constant in the system. The nonlinear damping
term, N%k is evaluated from the drag part of the Morison equation and depends
on a drag coefficient., This term is particularly important for a motion near

the natural period of the structure,

A1l terms in Eq. 2.67 are linear (on the assumption that the springs in
the mooring line are linear) except for the nonlinear damping term. For a
simplified solution of the equation of motion, Eq. 2.67, this term is
linearized with respect to time in the following way. The motions are assumed

harmonic

x, = %, el(et + &) (2.68)

k k
in which X, = amplitude of motion not necessarily linear with the wave
amplitude and g, = its phase angle. Then the nonlinear damping term is

approximated as
1%, 1%, ~ =5 (WX, )X (2.69)
k' T 3T VTR Tk :

The right hand side of Fa. 2.69 is the first term of the Fourier series
expansion of the left hand side. On substitution of Egqs. 2.68 and 2.69 in
Eq. 2.67 and elimination of time, t, the following matrix equation in
unknowns, X, and g are obtained:

g(-z(m+M)+1"(Nl+8N2 X) +C..]
o1 kT Tk “ik T 3 ik Yk ik
X el B = Fl ', j=1,2,..6 (2.70)

The solution for X, and g, are obtained by an iterative scheme in which X, in
the term with Nik is assumed zerc initially to obtain the first estimate of Xy
and g, through a 6 x 6 matrix inversion. This value of X, is then substituted
for X, 1in the term with Ngk to compute the subsequent solution until a
numerical convergence is reached.
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Several different variations of the equation of motion are possible and
have been used in analyzing the motion of floating structures. When nonlinear
(drag) damping effects on the structure are considered small, the equations of
motion reduce to

6

. 1 i(wt + a)

k=1

which is a linear equation whose solution is obtained as Eq. 2.70 for N?k = 0.

The correlation of the numerical results with experiments in wave tanks
on a variety of floating structures has shown that satisfactory agreement can
be obtained by the simplified theory. An example of such an experimental
correlation for a conventional barge is shown in Figs. 2.19 and 2.20. The
barge was tested in the head sea position in which the surge, heave and pitch
motions were significant, (Fig. 2.19) as well as in the beam sea position
where sway, heave and roll were important (Fig. 2.20). The cross marks
represent the linear theory results. The correlation is quite satisfactory
everywhere except near *hz natural period of the spring-mass system (e.g. in
roll). The theory seems to overpredict the motion in this area compared to
the experimental data, partly due to the low damping values near the natural
pcriod from the linear theory.

In Figs. 2.19 and 2.20, the nonlinear solution obtained from Eq. 2.70 is
shown as the solid line. While the scatter in the experimental data may be
due to a different amount of nonlinear damping with different wave height
(while the theoretical curve is obtained for a given wave height) the
correlation 1is better with this added nonlinear damping term. Thus, the
nonlinear damping improves the solution near the natural period of the
structure in a particular mode of oscillation.

The coupled nonlinear equations describing the various degrees of motion
that include a significant relative-velocity-squared drag term cannot be
solved in the frequency domain while retaining their nonlinear character-
istics. The use of the independent flow fields model or the relative velocity
model in the equations of motion depends on the relative magnitudes of the
water particle velocity drag force versus the structure motion damping
force, I[f the two are comparable then the relative velocity model seems
appropriate. Otherwise, the independent flow fields model is applicable.
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In random waves the equation of motion is written as before except that
the added mass and damping coefficients are obtained from the convolution
integrals. This is required for a random seastate because these quantities
are functions of wave frequencies. Thus, the equation of motion including
only the linear damping term becomes

6 * .. t *
kzl [(mjk + Mjk) X, * {w Njk (t - 1) xk(r) dt + Cjk xk] = Fj(t) (2.72)
where

* 2 *®

Njk(t) == fo Njk (w) cos ut du (2.73)
and

M3, () = M fLo g j

Jk(t.)) = Moy (w) - / jk (t) sin wt dt (2.74)

0

The quantities Mjk and Njk are the frequency dependent added mass and damping
coefficients, respectively. It is clear that this set of equation can only be
solved in a time domain analysis. The solution method is quite cumbersome and
requires considereble computer time,

2.7 LOW FREQUENCY OSCILLATION

The surface profile of a wunidirectional random seastate may be
represented as its short-term description by a large number, N, of sinusoidal
components having frequency, w, and random phase, e, (n = 1,2,....N), as
described by Eq. 2.13. The wave profile may be conveniently written in a
complex notation

jw t

n(t) =t /25(uJdu Jn e " (2.75)

n

[ -

1

~

where the quantity under the radical sign is the wave amplitude and u, is a

complex Gaussian random variable with the following properties:

~ 2117 - 1. ~7 1= ~ ot q s
E [lun 11=1; ¢ [umun] =0; E [umun] =0 (2.76)
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where E refers to the expected value of the argument, m # n and asterisk
denotes conjugate.

The steady potential drift force in regular waves has been shown to
appear from the second-order terms of the first-order potential. Since an
irregular wave has multiple components of frequency, the interaction of two
wave components at two frequencies will give rise not only to a steady drift
force as before, but also oscillating drift force components at low as well as
high frequencies, This is illustrated by a simple example.

There are several contributions to the high and low order components.
One of them is the free surface component, Ancther one is considered in the
present example, The pressure at a submerged location of the TLP is given
from potential theory by Bernoulli's equation

(2.77)

where ¢ is the total potential due to the wave field in the presence of TLP, u
and v are the corresponding horizontal and vertical velocity components and p
is the mass density of water, By linear theory, the first term in Eq. 2.77 is
a first order pressure while the second term is second-order, Let us consider
only the incident wave field and also assume that it is composed of two
reqular wave components having frequencies wp and wp. Then, by 1linear
superposition of Airy theory, the particle velocity components are

| =
1]

ucos wlt * u, cos wzt (2.78)

<
"

Vi sin wt + v, sin wyt (2.,79)

where (uy, vy) and (up, vp) are the velocity amplitude components at wy and wy
respectively. Then, the second-order pressure term, on expansion, reduced to

1 1 2 2 P 2
Pp =z e ly (" +u + v v, )+
1 2 2 1 2 2
> (u1 - vy ) cos 2w1t tx (u2 -V, ) cos 2w2t +




(u1u2 + v1v2) cos(m1 - uz)t} (2.80)
The above expression will produce a steady force, a component of force at
twice the frequency of the individual components, w; and wp, a sum frequency

force and a difference frequency force,

Thus, while the energy of wave at the heave and pitch natural frequencies
as well as surge frequency is negligible, two individual frequencies within
the wave enargy may be chosen such that their sum or their difference
approaches the high frequency (e.g., heave and pitch of a TLP) periods or the
low frequency (surge of a TLP) period. For exampie, a 6 second period will
produce a second harmonic at 3 seconds which may correspond to heave or pitch
natural period. Similarly, an 8 second and 4.8 second period would add to a 3
second period, A combination of 8 second and 8.7 second period will produce &
difference frequency corresponding tc the surge natuial period of 9%2.4
seconds.

The oscillating drift force is computed following the method outlined by
Pinkster (1980), In an irregular wave this force appears as a slowly-varying
force having the form

N N
F2(t) = ? E & cn{P(wm,wn) COS[(wm - wn)t - gyt o, 1
m=1 n=1
+ Q(wm,wn) Sin{(wm - wn)t - et g, 1} (2.81)

where N = number of wave components of frequencies w, (n=1,2, « « «, N) in
the irregular wave, P (symmetric) is the in-phase component of the wave drift
force in a wave group of frequencies w, and w,, Q (asymmetric) is the
corresponding out-of-phase ccmponent of the drift force, and Z, represents
wave amplitudes at frequencies w, and phase angles ep.

Tiie force, Fp, in Eq. 2.73 may be similarly expressed as

N N _ A i((um - wn)t
- = - *
Fz(t) LI Hon UnUn © (2.82)
m=1 n=1
where
Aan = (Pun= 100,) 7 25(6)dc /7 25(w Jdc (2.83)
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In the above expression for F,, real parts are assumed.

For a linearly moored lightly damped system, the equation of horizontal
motions (to which the second-order force is sensitive) may be written as shown
in Eq. 2./1 where the right hand side is replaced by expressions of the form
of Eq. 2.82. The solution for this set of equations in the frequency domain
may be written as

NN oL i - ow )t
X. =1 & G%n u ux e “m A (2.84)
J m=1 n=1
where
. N R
G = ¢ TW H (2.85)
mn .C.oomnoomn
Jj=1
and T;i is given by
i3 vi Lo 1 -1
Tmn = [- (wm - wn) (m_;j+ M1J> + 1(&;m wn) N1J + C1JJ (2-86)

Newman's (1974) approximate solution may be obtained from the above. For a
narrow-band spectrum, e.g., for a wave group, it may be assumed that w, and w,
are close to each other so that they may be replaced by their mean values
without appreciable error. Then

_ (o m _
p(“v'm:wn) =P L 7 s 3 } = Pmn (2.87)
Qla sw) = Q=0 (2.88)
and
N N ,
. - , \

FZ(t) == f Zn %n Pmn COSL(wm - wh/t - e + €n } (2.89)

m=1 n=1

where Prnn is obtained from the regular wave steady drift force at a frequency

corresponding to the mean of the frequencies, uy, and w,.

If it is further assumed that the only frequency that is of any large
consequence in deterwining :h2 slowly-oscillating mooring line load is the

natural frequency, uwy, of the system, then we can assume
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wm - wn - UN (2.90)
and only the diagonal terms in Eq. 2.89 are relatively important which gives
F(t) = Fb cos (uNt) (2.91)

Since the slowly oscillating mooring line load occurs at or near the
natural frequency of the system in surge, a reasonable estimate of its
magnitude may be made from the following differential equation:

mx + N.X + N, [X[% + Kx = F(t) (2.92)

1

in which m = total mass of the cylinder including added mass, N; = linear
damping coefficient, N, = nonlinear damping coefficient, K = spring constant
of the mooring line and F(t) is given by Eq. 2.91. This equation is similar
in form to Eq. 2.67 and an approximate solution is obtained in a similar
fashion by assuming x to be sinusoidal

X = Xq C€OS (“N t + €) (2.93)

where xq = amplitude of oscillation and e = its phase angle. The solutions
for xg and e are

T
- p
X, = (2.94)
0 [(x - wﬁ m)2 + wﬁ[Nl + %;-QNNZ xo]z}l/2
and
8
N [Nyt N, xq]
tan ¢ = - N 1 3?';N 2’0 (2.95)
K - wy m]

Once xg is known, the mooring line load amplitude is computed as

2.8 HIGH FREQUENCY SPRINGING FORCE

When a floating structure, e.g., a TLP is restrained in the vertical
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direction by its tendons, the natural period in heave is small, being of the
order of 2-4 seconds. This gives rise to the problem of high frequency
oscillation of TLP in heave due to a high frequency second order force. The
general design approach for the TLP is not particularly different from any
other compliant offshore structures. What makes the dynamics of TLP unique
from other floating structures 1is 1its response to the high frequency wave
exciting forces. Besides the responses at the wave frequency, the platform is
subjected to a high frequency tension oscillation of the vertical tethers
(often called springing) and a low frequency drift oscillation in surge. The
overall damping of the system (including mechanical and hydrodynamic) is
extremely small for both the springing and drift oscillation so that they
produce a significant load in the tendons and significant motion in surge.

The second-order forces are obtained from the first- and second-order
velocity potentials and the complete Bernoulli's equation. The quadratic
transfer functions obtained from these expressions are used to derive the
difference frequency wave exciting force (drift force) and the sum frequency
second order force {springing force). Thus, generalizing Eq. 2.81

N N
(2),.\ s |
' ) ~151 jfl Cicj{ Pij cos [(“1 t uﬁ)t - (ei t ej)]
* O3y sin Loy £ wpt = (e 6] ) (2.97)

where Pfj and ij are the even and odd components of normalized forces due to
wy and Wjs G and 4 are the corresponding wave amplitudes, and N is the
number of wave components in the random wave simulation. It is clear from the

above expressions that in regular waves
F@)=1y =0 (2.98)
and

. COS Z(mit - Ei) + Q+

Giosin 2(wt - )} (2.99)

Thus, the low frequency force is absent while the high frequency force appears
at twice the regular wave frequency. Moreover, this force is nonlinear, being
a .unction of the square of the wave amplitudes, %5 (second-order). The
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amplitude and phase of the quadratic transfer function are

TH = (P17 + (0] )A? (2.100)
Qb

e, = -tan”} (P—l‘- ) (2.101)
i

Based on this transfer function then, the tether forces in the high
frequency springing may be simply obtained by solving a linearized equation of
motion in heave and pitch. A model test was performed on a vertical cylinder
in waves in which forces on the fixed cylinder were measured. The waves
generated in the tank were regular waves, wave groups and irregular waves.
The wave groups consisted of two regular waves whose sum frequencies
corresponded to the natural pitch frequency of a hypothetical TLP. An example
of the forces measured due to one of the wave groups is shown in Fig. 2.21.
The wave profile corresponds to waves of frequencies 0.44 HZ and 0.88 HZ. The
force has additional peaks present corresponding to second harmonics of the
above frequencies, and their sum frequency component at 1.32 HZ. These higher
order loads are small, being on the order of 3 to 5 percent of the first-order
loads. The correlation of the second-order fixed cylinder loads in regular
waves with the computed load approximated by the first-order potential is
shown in Fig. 2.22.

Numerous analyses and model tests have been performed on TLPs which
considered different aspects of platform motion and tether dynamics. One of
such analyses that included all three areas of response of the TLP was
performed by DeBoom, et al. (1984). They analyzed the motion and tether
forces for a TLP, The heave and pitch natural nperiods were almost
identical. In random waves, the added mass and damping terms were assumed to
be frequency dependent as outlirned in Eqs. 2.72. The solution was obtained by
a finite difference scheme. DeBoom, et al. (1984) compared results from such
an analytical solution with the measured high frequency tether forces in
reqular waves in a test with a four column TLP model. The correlation is
shown in Fig. 2.23. The fore and aft tether forces were found to be almost
180° out of phase. From this, it is concluded that most of the high frequency
contribution came from the pitching motion of the TLP. The springing force

appeared at the higher (twice for reqular waves) frequencies and was noniinear
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(Eq. 2.99) so that the corresponding motion was also nonlinear. While the
fore and aft tether forces are the same theoretically, the measurement showed
different values. The force being second-order is difficult to measure
accurately and hence the discrepancy and somewhat poor correlation,

The springing forces on a large scale (1:16) TLP model were measured in a
test in the CBI tank [Petrauskas and Liu (1987)] with a four-legged TLP hull
connected to the sea floor with four vertical tendons. The springing forces
arised from the resonant pitch periods of about 3 seconds. Regular waves at
twice the pitch period amplified the resonant springing force in the tendon.
The amplification of the furce at the tendon due to a random wave is clearly
shewn in Fig. 2.24. The tendon load at the wave frequencies is almost
negligible compared to the resonant load at twice the wave frequencies., The
corresponding correlation of the regular wave (averaged) springing load in the
tendons is shown in Fig., 2.25. The computed results for different damping
values show the importance of the knowledge of damping in determining ine
springing force.

2.8.1 Damping at Low and High Frequency Responses

The resonant response of a mooring structure, e.g., & TLP, is limited by
the amount of damping present in the system, The TLP system experiences
damping from two natural sources, e.g., material and hydrodynamic. Sometimes,
mechanical dampers [Katayama (1984)]1 or other active damper systems are
introduced externally., The material damping appears from the tendons and
their attachments to the TLP as well as to the bottom. The subsea template
also provides some damping., The hydrodynamic damping appears in the form of
the radiation damping as well as nonlinear viscous damping. Additionally, a
slow drift of the structure in the presence of waves produces an added damping
force which may be called wave drift damping (or wave damping). For the surge
motion of a slender body, the contribution of the quadratic viscous damping
was found to be small by Nakamura, et al., (1986). However, for the yaw
motion, it was important.

The contributions f:um the material and radiation damping are nearly
equal. In an example problem, Nordgren (1986) considered the material damping
factor to be 0.1 while the radiation damping for the dominant pitch response
was 0.13., The heave response at a natural period of 2.5 seconds was small
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compared to the pitch response at a natural period of 3.0 seconds. However,
the drag-induced damping in the high frequency resonance modes in heave, roll
and pitch motions of a TLP 1is rather negligible because the amplitude of
platform motion is extremely small.

Chakrabarti (1984) presented the low-freguency hydrodynamic coefficients
in surge and sway for several floating vessels including a semisubmersible and
a vertical cylinder. The results from the vertical cylinder showed that the
radiation damping in surge is negligible (less than 0.02 percent) and most of
the still water damping is linear viscous damping (about 1 percent). The wave
damping factor in regular waves was proportional to the square of the wave
amplitude and was equally important.

The heave damping factor obtained from the pluck test of a TLP model
discussed earlier [Petrauskas and Liu (1987)] was found to range from 0.11
percent to 1.6 percent. The corresponding prototype values should be even
smaller if they are assumed to be dependent on the Reynolds number,

The wave damping at the low frequency in surge of a TLP may be treated
analytically in the following way [see Hearn, et al. (1987) for details].
Since the period of slow drift oscillation is an order of magnitude higher
than the wave period, the problem may be assumed to be equivalent to computing
the added resistance of the TLP advancing at a slow forward speed during half
the drift cycle in regular waves. This approach was taken by Hearn et al.
(1987) in computing wave damping coefficient in slow drift of a
semisubmersible. Once the added resistances for different forward speeds and
wave frequencies are known, the wave drift damping coefficients' quadratic
transfer function may be computed from the velocity derivative of the added
resistance as the forward speed approaches zero.

R, (V)
by = —u— ‘u - 0 (2.102)

0

where by, = wave drift damping coefficient, U = forward speed from slow drift
and Ry = added resistance in waves. A comparison of the computed wave damping
coefficients with the model test results on a SEDCO 700 semisubmersible has
been made by Hearn, et al., (1987)., This is reproduced in Fig. 2.26. Note
that near a wave frequency of w = 1.1 rad/sec., the damping is large whereas

at lower freguencies, it is quite small. This observation is, however, only
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valid for the particul~>r geometry but is made to illustrate that the wave
drift damping could be quite significant in surge drift oscillation
computation.

As mentioned earlier, the surge natural period for a typical TLP is long,
being of the order of 100 seconds. Qi, et al. (1986) tested a four-legged TLP
model at a scale of 1:64 for low frequency hydrodynamic coefficients in
surge. The measured surge period of the model was about 12.5 seconds (100
second prototype). The natural period in waves was slightly higher due to
additional added mass. The damping was computed in still water and in regular
and random waves. The pontoon geometry was changed from circular section to
rectangular section of the same cross-sectional area.

The still water linear damping was obtained from a pluck test using the
transient equation of motion. The damping factor in surge was found to be a
function of the initial displacement, possibly due to the presence of viscous
damping. As expected, rectangular pontoons provided higher damping values.
From the information presented by Qi, et al., the damping factor was

approximately estimated as follows:

Damping Factor
Circular pontoon 0.03 - 0.06
Rectangular pontoon 0.03 - 0.09

In regular waves, the damping increased for the rectangular pontoon whereas
the damping showed a slight decrease in value for circular section. The

radiation damping component was dependent on the wave frequency.

2.9 MATERIAL PROPERTIES

Often the nonlinearities are encountered in the properties of the
material involved in the offshore structure system. This is particularly true
for the flexible members of an offshore structure. Examples of these
components that exhibit nonlinear behavior are risers, mooring lines, etc.

2.9.1 Catenary System

The type of nonlinearities encountered in a catenary type mooring system
is illustrated here. Consider a mooring system that is composed of two
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different line materials with a clump weight attached to their intersection.
The clump weight may be considered acting positive upwards in which case it is
replaced by a buoy. The two elements of the line may have different weight
and elastic properties. In a mooring system it is often customary to use a
cable element at the upper part and a chain element at the lower part of the
catenary. A clump weight is also often used at the junction. Thus, the upper
part of the catenary reacts to the smaller waves and behaves as a soft system
while the lower part is provided to make the system stiff in response to
occasional big waves.

Given these conditions, Fig. 2,27 demonstrates the four possible
conditions where both parts of the 1line assume a catenary shape. The
quantities in the figure and in the subsequent analysis are defined as
follows: Q = length of lower element lying on seafloor; B = weight of clump or
huoyancy of buoy at the intersection of two elements; {a;, by} = coordinates
of element intersection; {ap, by} = coordinates of upper element at surface
vessel; yp = angle lower element makes with norizontal at anchor; Vg = angle
upper element makes with horizontal at surface vessel. The four possibilities
of Fig. 2.27 can be broken down into two cases. Either the line touches the
seafloor or it does not. If these two situations can be analyzed, then the
only problem remaining is to choose the proper location for the intersection
{21, by} such that the summation of forces at the intersection is zero. See
Fig. 2.28.

Turning first to the situation described by Fig. 2.29a, the following
assumptions are made: the lines are uniform and supported at two points and
the line can only carry loads along its axis. Then, the summation of forces on
a small element, as (Fig. 2.29a) in the horizontal and vertical directions
must equate to zero. Tnis gives rise to the following differential equation
for the catenary:

:—%—=.F1[1+(%{_)2 /2 (2.103)
X X

where w = weight per unit length, which may be reduced to a first order
differential equation by substituting

k = rf (2.104)
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p = (2.105)
Thus
Pk (14 pYHe (2.106)

The form of the solution of Eq. 2.103 is

|

y =+ cosh (kx + Cl) + C2 (2.107)
Equation 2.107 must be solved in terms of boundary conditions. Since
there are three unknowns, k, Cy, and Cy, there must be three boundary cond-
itions. In this development these are line length, 2; scope, Se = By - AX;
and elevation, e = By - A,. Using these boundary conditions the following

Y
equation can be derived:

[22 - e2] _ . sinh u 2
= (=)

J (2.108)

S
C

- ks
where u -7

Equation 2.108 is solved by a computer program using standard numerical

technique such as the Newton Rhapson method. When u is known, Cj and Cp can
be derived from Eq. 2.107.

The above analysis gives the classical catenary solution. It will
depart, however, from the classical theory if stretch 1is added to the
analysis. Throughout the 1line, the horizontal component of tension is
constant. The vertical component is constantly changing as the slope of the
1ine changes. Thus, the tension in the line is a function of position which
will change with the stretch in the line. It is assumed that the stretch can
be added to the initial line length and the weight per unit length can be

modified uniformly which is considered a valid assumption,
Employing Hooke's law for elastic deformation

des

At

ds = (2.109)
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where d§ = incremental deformation; Fx = load; ds = incremental length, A =

cross-sectional area of cable; and E = Young's modulus.
On substitution of various quantities on the right hand side, the form of
§ becomes

s=1F | # [1 + cosh 2(kx + C;)] dx (2.110)

After & is determined from Eq. 2.110 it is added to the initial linc
length and a new line length, 2, is used in Eq. 2.108. This procedure is
repeated until the tension in the line balances the stretch in the line.

Turning to the situation described in Fig. 2.29b, part of the mooring
line now lies on the seafloor. For simplicity, assume that {A Ay} = {Q,
0}. At this point, the slope of the line is zero; therefore, Eq. 2.107 can be
rewritten in the form

y = 1/k cosh k(x - Q) - 1/k (2.111)
The length s is determined such that

s = 1/k sinh k(B, - Q) (2.112)
and
2 =Q + s _ (2.113)

Upon substitution of the coordinates of the surface vessel (B, By} into

Eq. 2.111, two simultaneous equations with two unknowns are derived.

By = 1/k cosk k(B, - Q) - 1/k (2.114)

£ =Q+ 1/k sinh k(B, - Q) (2.115)

Upon solution of this set of simultaneous equations for k and Q, Cj and
Co can be easily derived and the catenary equation defined, Stretch may then
be added to the line in a fashion similar to the prior situation with the
slight change that no integration is required for the line lying on the
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bottom. In this part of the line, the tension is constant and equal to

£y = W/k. Therefore,
FXQ
61 v (2.116)
Fx Bx 1
8 = 7 é ?-[1 + cosh 2(kx + Cl)]dx (2.117)
and the total stretch, &, equals
§=8 %6, (2.118)

This total stretch is added to the initial line length and a new line
length, 2, is substituted into the pair of simultaneous equations. This
process is repeated until convergence is achieved.

It is clear from the above analysis that this type of system will produce
a nonlinear spring constant in the mooring line, making the motion analysis of
a floating moored system nonlinear. Such a system is quite prevalent in
offshore operations. Examples of application of such systems are moored
storage tankers, pipelay barges, single point mooring systems, floating
production systems, and guyed towers.

A typically moored tarxir system with catenary chains is shown in
Fig. 2.30 where four chains have been used on a turntable, Figure 2.31 gives
an example of the load-elongation characteristic of the catenary chain model
used in a wave tank model test. The solid line is the theoretical curve
obtained from the above equations while the symbols represent actual data
obtained frcm the simulation of the catenary in the test setup.

2.9.2 Flexible Structures

The material stiffness of the components of a flexible structure
contributes to the dynamic characteristics of the structure. The application
of such an element in the marine field may be seen in the marine risers, OTEC
cold-water pipes, and members or conductors in a production platform, Various
end conditions for a flexible member are possible, e.g., fixed-fixed, fixed-

free, pinned-free, etc. The basic horizontal equation of motion of such a
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flexible cylindrical member including its internal forces, surface and body
forces may be written in the x-y coordinate system as

2 2 2 2

9 9 X 3 X oX 3 X ,

— [ El(y) ] = Toly) S - wly) 55+ m (y) == = fy,t) (2.119)
2y i LY 8y X at

The first term on the left hand side in Eq. 2.119 is the horizontal reaction
from the flexural rigidity. the second and third terms arise from the
effective tension, T,, and buoyant weight, w, respectively. The final term is
the inertia of the riser accelerating in the horizontal direction. The right
hand term represents the external forcing function.

For static riser problems, the value of the last term is zero and the
right hand side of Eq. 2.119 is replaced by the time independent drag term due
to a constant current profile as

fly) = 5 » Cyly) Dly) UE(y) (2.120)

where p = mass density of water, Cy = drag coefficient and U(y) = horizontal
current velocity as a function of the vertical coordinate, y.

For a dynamic riser analysis, the right-hand side of Eq. 2.119 may
include the wave inertia and drag forces. In this case, the right hand side
is given as a forcing function, f{y,t) which may be expressed by the modified
Morison equation (including relative velocity, e.g., Eq. 2.35). An added mass
effect from Eq. 2.35 is included in the last term of the left hand side of Eq.
2,119,

The solution of Eq. 2.119 for the static or dynamic case requires
additional constraints or boundary conditions, e.g., deflection and rotation
at the two ends or the top horizontal offset for a marine riser. The
solutions are achieved in one of several available numerical techniques, e.g.,
direct or indirect finite difference or finite element methods. A frequency
domain analysis is possible only after the linearization of all the nonlinear
terms, and may not be suitable in many riser appiications.
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3.0 PROBABILISTIC METHODS FOR EXTREME VALUES

The design and performance of an offshore structure depends largely upon
the response of the structure to the environmental loading such as waves. The
response analyses outlined in Chapter 2 are generally applicable to regular
waves, However, the extreme responses of a structure in random ocean waves
should be known for the adequate design of the offshore structure. The
extreme response chosen for the design of a structure should meet, as a
minimum, the following criteria:

o LIFETIME RESPONSE
The expected maximum response during its lifetime should be known to
ensure the integrity of the structure,

e OPERATIONAL RESPONSE
The responses of the structure under its normal operating conditions must
be known to ensure the intended operability of the structure.

e FATIGUE DAMAGE
The accumulated responses of the structure during its entire lifetime
must be known to assess the cumulative damage of the structure over this

period.

The design criterion of a structure is governed by the failure of its
structural members due to the environment it 1is exposed to during its
lifetime. This failura may be caused by the maximum instantaneous stress
experienced by the member due to a given environment. Alternatively, it may
fail due to fatigue damage resulting from an accumulated number of cycles at
varying stress levels., Thus, the design value should be an upper bound to
these quantities,

The primary concern of this report is to discuss available computational
methods of the extreme event due to the environmental loading. The design of
an offshore structure is based on either a deterministic or a probabilistic
approach, In a deterministic metnod, the response analyses described in
Chapter 2 for a given wave and wave theory may be applied. The probabilistic

method of design may include a short-term prediction or a Tlong-term
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prediction, The short-term response statistics are ogbtained on the basis of
one particular seastate, This seastate is specified by an energy spectrgl
model having a given significant wave height and a characteristic period. On
the other hand, the long-term prediction method includes all seastates which

the structure is expected to encounter during its design lifetime,

For fixed structures, for example, steel piled and concrete gravity
structures, a deterministic method of extreme value prediction 1is normaliy
used. However, in fatique assessment, a long term probabilistic method 1s
often used for these cases. For an extreme value analysis of floating
structures, a probabilistic method is common, but only for the short-term
seas. The operational mode of floating structures is generally analyzed on
the basis of long-term prediction.

A short-coming of the deterministic and probabilistic extreme value
predictions based on short-term statistics 1is in the «choice of the
environment, It is not always obvious which set of environmental conditions
will produce the largest responses. On the other hand, the longy-term
environmental data over the entire service life of a structure, e.,g., in the
form of a wave scatter diagram is scarce. Therefore, the reliability of the
choice of 1long term data on which the responses are based may be
questionable, The extrapolation of a few (typically, 2-5) years' direct
measurements of data to the structure's lifetime and beyond introduces
uncertainties in the subjective evaluation, Sometimes, hindcast methods are

used to obtain similar information.

For Gaussian response processes, the probability of system failure may be
related to the excitation process statistics, This relationship is well
established and straight-forward to perform. Un®ortunately, nowever, small
nonlinearities are invariably present in the response of a real system. 7This
nonlinearity, however small, may cause significant departures of the response
characteristics from the Gaussian form in the extreme "tails” of the response
distributions. Since the extreme responses are derived from the tail end of
the response distribution, such derivations have a very profound effect on the
probability of the system faijlure. Iy is thus of vital importance to develop
methods of predicting the distribution of the response in the nonlineur
case, The general noniinear problem 1s largely unsolved. Some  limited

information on the response characteristics may bhe obtained from the
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perturbation methods and equivalent linearization techniques, Nistribution
functions of some nonlinear problems may be obtained by the series method in
probability theory.

Tickell (1978) presented a review of the state-of-the-art on the
probabilistic approach to the problem of fluid loading on an offshore
structure. Linear random wave theory is generally used to describe the water
particle kinematics. While it represents a versatile model for the random
sea, it has certain limitations. Ffor example, the spectra of the particle
kinematics and their derivatives become increasingly 1large at the high
frequencies (tail end of the spectra) where wave energy is generally small.
This is particularly enhanced in the free surface zone. The higher moments
of the spectra, m,, which depend on the nth power of frequency, likewise "blow
up" due to this divergence of spectra at the high frequencies. These moments
are often needed for the computation of the distribution functions. Moreover,
the linear process of describing a surface cannot account for the vertical or

horizontal asymmetry seen in steep storm waves,

For a particular seastate characterized by the random wave parameters,

Ho, T, and 55, where H; = significant wave height, T, = zero-crossing period

and vy = angle of mean wave direction, the short term response of the

)

structure may be obtained by the spectral and probabilistic techniques. For a
linear system, this procedure is straight forward. In this case, since the
waves are assumed to be a stationary Gaussian random process, so will be the
responses for which all the statistical properties are known. Thus, the
spectral analysis technique may be used to determine the statistics of the
linear system. For structures whose responses are linear with respect to the
excitation force, wunce the force distribution function 1is known, the
probability distributions of response normalized with respect to standard

deviation will have the same form,

The prediction of the effect of nonlinearities either due to the
environmental loading or due to nonlinear structural behavior for an offshore
structure in randnm seas 15 not straightforward and a general procedure is not
known, For a 1inear system subject to Gaussian excitation, the response is
also Gaussian, However, if the system contains nonlinear elements, the
response will no longer he Gaussian, In this case, the solutions for the

probahiltistic responses may be obtained only in special types of




nonlinearities. Often approximations are necessary before a probabilistic
theory may be applied to the nonlinear responses. One of the methods of
prediction is the nonlinear transformation of random variables.

3.1 SOME COMMON TYPES OF PROBABILITY DISTRIBUTION FUNCTIONS

The probability density function (pdf) henceforth denoted by p, is
defined as the fraction of a designated period of time that a particular event
is expected to occur, The probability distribution or the cumulative
distribution function (CDF), denoted by P, is the fraction of the time period
that this event is not exceeded. The probability of exceedance, denoted by Q,
is the fraction of time the event is exceeded. Thus, P is related to Q by the
relation, Q =1 - P,

3.1.1 Normal or Gaussian Distribution

The probability density of a ncrmal or Guassian distribution of a random
variable, x, is given by

(x - ux)2

p(x) = —d—exp | - ——~ ] (3.1)

2n Oy 20X

where u, 1s the mean value of x, and o, fis its standard deviation. This

X
formula applies to the entire range of x from -= to +« , From Eq. 3.1, it
is clear that p(x) is symmetric about the mean value of x and has a maximum at
uye It drops off fast in the shape of a bell., The value of ¢, determines the
width of the bell. If Eq. 3.1 is integrated between to, about ., it will
give a value of about 0.68. Thus a range of to, about the center of the bell-
shaped curve contains 68 percent of the area of population, a t20, covers 95

percent while a t3c, gives 99.7 percent of a normal population.

The expression for the cumulative probability, P, is not known in closed
form, and the values of P are obtained from Eq. 3.1 by integration

P(x) = [ plx) dx (3.2)
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The plots of the probability density, p, and the probability distribution

function, P, for a zero mean (u, = 0) and unit variance (o,) are shown in Fig.

3.1. The shaded area in the density curve is represented by the value of the

cumulative probability, P, on the distribution curve,

If the variable x is transformed to a quantity z by

, = (3.3)

then this transformation is called normalization and z 1is called the
"standard" normal distribution, because it has a zero mean (“z = 0) and
standard deviation of unity (o, = 1). The symbols that are commonly used to
represent the probability density and cumulative probability of the standard
normal are ¢(z) and ¢(z) respectively, which are given by

1 ‘22/2
¢(z) = — e (3.4)
v 27
and
z
¢(z) = [ o(z) dz (3.5)

The values of ¢(z) are tabulated in many textbooks on mathematical statistics
[e.g., Tobias and Trindade (1986)].

3.1.2 Rayleigh Distribution

Unlike the Gaussian distribution, the Rayleigh distribution applies to a
random variable, x, which is always positive (0 < x < «) , The probability
density function for the Rayleigh distribution is given in terms of the mean
value of x, Hys @S

p(x) = s exp | -7 (A7 (3.6)
X
X

This functicn may be integrated in a closed form using Eg. 3.2 to ohtain the
expression for P(x).




.4

PROBABILITY DENSITY

1.00,0.0
q |

0.7S

-

0.50

0.25

CUMULATIVE PROBABILITY

0.00

FIGURE 3.1 GAUSSIAN PROBABILITY DENSITY AND DISTRIBUTION FUNCTION
(MEAN = 0.0; VARIANCE = 1.0)




kit

P(x) = 1 -exp | - § (%)% (3.7)

X
Hx
The probability density and the cumulative probability of Rayleigh
distribution are shown in Fig 3.2. The mean value of x in these plots is
taken as one (ux = 1). In other words, the plots represent the independent
variable as normalized with respect to uy.

3.1.3 Gumbel Distribution

The Gumbel distribution is given by the formula

P(x) = exp [- exp {- a{x - 8)}] (3.8)

This first asymptotic (Type 1) distribution is not bounded and grows without
1imit, albeit in a logarithmic scale, A reduced variate is introduced as

y = alx - 8) (3.9)

The quantities a and 8 are the slope and the mode defined as

o]
)

= E(ON)/ON (3.10)
and

B=xy - E(yN)/a (3.11)

where E{oy) and E(yN) are the expected value of the dispersion of N values and
the expected value of the reduced variate, respectively, oy 1s the standard

deviation, and YN is the mean of the variables, xj (i=1,2, « « « N}, The

Gumbel distribution for a slope, o = 1, and mode, g = 3, is plotted in
Fig. 3.3.

The reduced variate is related to the probability value as
y = -In [-In P] (3.12)

obtained from the formula given in Eq. 3.24.
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The expected values E(o) and E(y) are functions of the total number of
observations, Their asymptotic values for an infinite number of observations
are

™

—
Q

~—
i

/Y 6 (3.13)
and

m

—~
«

~—
i

0.5772 (3.14)

which may be used for large but finite number of observations. The curve for
the extreme values is then given by

x
1}

p+yla

3.7.4 Weibull Distribution

The Weibull distribution function is given as

P(x) =1 -exp [- (% ; 8 Jk ] (3.16)

The quantity k is called the shape parameter and is generally assigned a value
between 0.75 and 2.0. The parameters A and B are determined from observed
data by the least-square method,

An alternate form of the Weibull distribution is given by
P(x) =1 - exp [-B x™ (3.17)

The probability density is obtained by differentiating the above equation with
respect to the variable, x

p(x) = m B x™ ! exp [- B x] (3.18)
If Fa, 3,17 is rearranged, it may be written as a Tinear equation

In [In =5 1=1n8+minx (3.19)

53




where In B is the intercept and m is the slope. The values of B and m may be
determined by fitting data.

The Weibull cumulative probability distribution for wave height may be
written as

A"

p(H) =1 - e rins (3.20)

where A and m are constants, The probability density function is written as

p(H) = Am( e M u7le TS (3.21)
rms

Taking the logarithm twice and rearranging terms

1 B H
oy v i TnA+mln m
rms

In 1In (3.22)

which is the equation of a straight line of intercept In A and slope m, The
parameters A and m are determined by the empirical fitting of data. For A =1
and m = 2, the expressions reduce to the Rayleigh distribution.

3.1.5 Frechet Distribution

A distribution function of the Frechet type was proposed by Thom {1973)
for annual maxima of extreme wave heights

P(x) = exp [~ ()77 (3.23)
This equation may be written as a linear equation
In[-1nP]==-kInx+klInA (3.24)
in which -k is the slope and kInA is the intercept of the line. An example of

the Frerhet distribution for a slope of 2 and an intercept of 1 is shown in
Fig. 3.4. The probability density is obtained as

54




1.2

1.0

0.8
i

5

DISTRIBUTION
0.

0.4

0.2

b Lo

FIGURE 3.4 FRECHET DISTRIBUTION FOR A SLOPE OF 2 AND AN INTERCEPT OF 1




[=]
[+ o]
e 7
w
1
AD
[
I
Q.
>
o
N
o
Lw)
“20.
30. up. 50. 60. 70.
Hs (FT)
FIGURE 3.5 PROBABILITY DISTRIBUTION OF SIGNIFICANT WAVE HEIGHT, Hg, FOR

EXAMPLE PROBLEM




px) =% (¥ Texo [ - ()] (3.25)

This type of Frechet distribution is known as Fisher-Tippett Type II
distribution. The Type Il distribution is related to the Type I (Gumbel)
distribution by an exponential transformation. Thus, In P will provide a Type
I distribution. The parameters for the Type I distribution are simpler and
more efficient to compute, from which the Type Il parameters may be obtained
by a transformation.

Analyzing the significant wave height data from Ocean Station Vessel
(0SV), Thom (1973) obtained the significant wave height distribution function
as

H

P(H) = exp [ - (52 )70 ]
S

(3.26)

in which the scale parameter of the wave distribution is related to the scale
parameter of the wind distribution by

bs = 0.455 b, (3.27)

where b, is in feet of wave height and b, is in mph of wind velocity. The
scale of wind is obtained from OSV data as

_ il 1/2
b, = [373.8 T+ 542.411/2 - 233 (3.28)

in which'Uhax = maximum of the monthly mean wind speed in a year in mph,
These values of the wind speed have been charted for all oceans by Thom
(1973). The quantile for the significant wave is then obtained as
H (P) = exp [Inb_ -+ 1n 1n ()] (3.29)
s s & I .
The extreme waves may be derived from H; on the assumption of Rayleigh

distribution for the short-term waves.

EXAMPLE: For a North Sea location 55N-5E find the maximum wave height for a
probability level of 0.98.
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The maximum monthly mean wind speed, U for the above North Sea

max 2
Jocation is 19 knots or 21.8 mph (9.8 m/s). This value is obtained from the

figures provided by Thom (1973). Then

[373.8 x 21.8 + 542.411/2 . 23.3
70 mph (31.3 m/s)

o
i

Using Eq. 3.27

by = 0.455 x 70 = 31.9 ft. (9.75 m)
The probability distribution of H. based on this value of b, is shown in

Fig, 3.5. The significant wave height, H., for a probability level of 0,98 is

S’
computed from Eq. 3.29

. 1 1
H (0.98) = exp [ 1n 31.9 - = In In ( 708 )]
61 ft. (18.6m)
1.8 x 61 = 110 ft, (33.6m)

1

Hmax

wnere a factor of 1.8 has been used considering 900-1000 waves in the record

to achieve the maximum wave height,

3.1.6 Cumulants and Gram-Charlier Series

The nth cumulant of a random process x is defined as

N
= 5 S Do ma)] 1y (3.30)

Q.
<D

where M(6) is the characteristic function. Note that the probability density

function p{x) and M(9) are a Fourier transform pair

M(9) = = [ p(x) e dx (3.31)
The quantity, k1, can be shown to be the mean value of x, p say , while k? is
the variance, 02 say. The importance of the cumulants lies in the fact that

the probabhilit, density function of a general non-Gaussian random process can

be written in the form of a s=ries, the coefficients of which are functions of
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the cumulants. Ore of the comnon forms of these series is called the Gram-

Charlier series given by

p(x) =/_%O e” 12 * “*%T(E%)’ (2° - 32)
+}[T(k—}] (27 - 627+ 3) + L.l (3.32)
o
where
, =X (3.33)

Besides ki and k, defined above, two other quantities of importance are
the skewness, defined as k3 / o3 and the kur.osis, given as k4 / 04 . For a

Guassian random process

k =0 for n»>2 (3.34)
Thus, for a random process if higher cumulants are evaluated, e.g., k3 and kg,
they pravide a meacure of the deviation of the process from the Gaussian
process.

3.2 DISTRIBUTION OF SHORT-TERM WAVE PARAMETERS

3.2.1 Wave Elevation Distribution

The sea surface elevation 1is assumed to follow * Gaussian distribution
with a zero mean, Therefore, for the sea surface elevation, n (where Mo is

as«umed to be zero)

p(n) = ——— e n (3.35)

where o, = 4 My and mg is the area under vthe wave energy spectral density

curve,
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3.2.2 Wave Height Distribution

For a narrow-band Gaussian ocean wave whose components are in random
nhase uniformly distribution over 7, the wave height follows Rayleigh

¢ stribution given by its probavility density function,

2H H2
p(H) = — exp - E?‘- ; (3.36)
rms rms

where H = individual wave heights 1n a wave record and H.,. = root-mecan-square

wave height,

Based ¢n thi< distribution the most probaple maxima ir a given number of
waves can ne determined. According to Cartwright and longuet -Higgins (1956)
the largest expected value is related to the rms value in terms o1 the number

of zero upcrossings, N, ¢y the formula

<TI0 it

Hpax = ¢ 2 : m N Mems (3.37)

where the Gamma function, 6 = 0.5772. For example, in 1000 waves the most

probanle maximun is related to the significant wave height, HS hy

where

This  canstitutes  the  short-term extreme value prediction for wave
hetghts., If the inpnt waves are assumed to be Rayleigh distributed, then the
Tinear responses may bhe shown to be Rayleigh distributed as well. In this
case the extrem: yvalue of the response is computed from this distribution as
ahove. This analysis i3 called the short-term extreme value analysis for a

linear system,

3. dide Band Spactrunm

‘he oxtrema valies of g short-term stationary random process having an
arbitrary bhandwidth spectrum have heen predicted by 0Ochi (1973). The most

probable extreme wvalue as well as the extreme value at a prescribed

hH




probability level have heen derived, the latter of which was recommended for
the design of offshore structures. Selected points on a scalar random process
are 1llustrated in Fig., 3.6. In evaluating the extreme value, it is clear
that only the maxima of the random process with positive values (or minima
with negative values) need be considered. It should be noted that the
presence of several maxima hetween consecutive zero crossings indicate a broad

hand spectrum for the random process.

The probability density function of the maxima, x, is given by

2
v m
0 3 | ‘
nix) = Coexp | - Ly { =X )%
1 + /1 - &7 v 2 2¢ v mO
+ v 1 - e< )exp‘—%\/_x_jz}
Y mO mO
S R .
:’11_:,_/16 € X\l\‘ 0 < x < » (3.38)
Y om 0
in which the spectral moments are given by
Moo= " @n S{u) du (3.39)
n .
0
= srectral widtn parameter defined as
?
5 mn
BT, (3.40)
MMy

and : 15 referred to as the standard normal distribution given by

TR f:é: ,v e 7 du (3-41)

N T

If tee wvariable x is nondimensionalized by dividing by v My s then the

probatnlsty dengity function of

B (3.42)
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becomes
-2
p(x) = - [——exp {-F5 }+
1+7/1-¢€4 V23 2¢
X
T Zxe ? {1-@(-—iii—f)}] 0<X<w
(3.43)

If the random process is assumed to have a narrow-band spectrum (e = 0) then

Eq. 3.43 reduces to

-2
_X
2 0<X < m (3.44)

p(x) =xe
which is the form of the Rayleigh distribution. Similarly, for a wide-band

spectrum (e = 1),
2

p(x) = (3.45)

f?ﬁsq
(]
]
~of <t

which is the truncated (at x = 0) normal (Gaussian) distribution. Figure 3,7
shows the probability density function for various values of e.

The cumulative distribution functions of x and X are derived by

integration as follows:

2 1 X
P(x) = [ - 1 -/ 1T-¢€2)+39
’ 1 +/1 - €2 Lzl ) ( 3 ma )
-V T2 - X_ 2 oo (LI _x v,
eZexp { -5 | = )° ( = ) 1]
(3.46)
and
- 2 1 X
P = -2 (1-v/1<¢2 Z
* 1«»./"1—.—82t z | )re ()
2 T—z (3.47)
- l-szexp{—z}{1-¢(‘___t_€.’—)}]
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In order to derive extreme values, let us consider that there are N
observations of the type of Fig. 3.6. LlLet ;i be the observed maxima of these
N records in nondimensional form., We first arrange X; in ascending order of
values Zj» Let o be a small prcbability level that ¢y be exceeded. Then
for € < 0.9, a simple formula for the extreme value may be obtained as

- f—— 1/2
oy = [ 21n 1 - ¢ g% )] for ¢ < 0.9 (3.48)
1+ V1< €<

H

This formula is valid when « is small, on the order of 0,10 or less. For ¢
0 (narrow band process)

~

Figure 3.8 shows the relationship in Eq. 3.48 for various values of ¢ when «
0.01. Note that the dimensional values, xy, may be obtained by multiplying
by v m,. It is interesting to compare the extreme value for the narrow-band
spectrum with the corresponding most probable extreme value, Eﬁ .

EN =y 2 InN for € = 0 (3.50)

Thus for small aq, EN is considerably larger. This should be expected because
for a large value of N, the probability of exceeding Eﬁ may be shown to be
quite high

Vim P [ 2y > Ty ] =1-e’l = 0.632 (3.51)

The most probable extreme value for 0 < ¢ < 0.9 is

T 1/2
27l Ny (3.52)

Ty =1 20 {
N 1+ /T <2

which reduces to Eq. 3.50 for ¢ = O.
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Expressing N as a function of time, Tp, in seconds the extreme value for

a narrow-band process is obtained as

T m
- R 2 1/2
Rk

CN =2 1In rL {-(-2—;)—& Fn—(-)- for small « (3.53)

This value is plotted in Fig. 3.9 for o = 0.01 and for different values of

zero crossing frequency, («mz/mo) as a function of time., The corresponding
most probable value is

T m 1/2
ZN=[21n{—HR-\/m_—2-}] (3.54)

3.2.4 Nonlinear Gaussian Waves

The statistical prediction of wave ®heights assume the waves to be
Gaussian. In this case, Rayleigh distribution is applicable (for narrow-
banded waves), For nonlinear waves, the distribution is not Gaussian.
Longuet-Higgins (1980) suggests that the Rayleigh distribution may still be
valid as long as the rms value of the linear Gaussian waves are adjusted by a
factor of 0.925 in the distribution,

Forristall presented a two-parameter Weibull distribution to fit wave
data from the Gulf of Mexico given by

P(e) = exp( :%2 ) (3.55)

where ¢ is nondimensional wave amplitude (half the trough-to-crest height) and
« and B are empirical parameters. The values of a and 8 were found to be o =
2.126 and 8 = 1.052 by fitting the wave data.

Longuet -Higgins (1952) derived Rayleigh distribution for narrow-banded
surface seas of sinusoidal components as the distribution function for the
wave amplitudes

P(a) = exp ( = ) (3.56)
where a denotes the rms wave amplitude. For linear waves when the

individual wave crests are approximately sinusoidal, the zeroth moment is
related to a by
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1 3 2

m, = (3.57)
In this case, the distribution function may also be written as
_a2
P(a) = exp( Vi ) (3.58)
0

However, for nonlinear waves where crests are narrower and higher than troughs
as well as for finite bandwidth, the relationship in Eq. 3.58 is not valid.
In the latter case, for example,

2

ER 2
o T 1 - 0.734v (3.59)
0
where
¥
L 2 (3.60)
Z?m
0

where Mo is the second moment of the spectrum about the mean frequency, « .
For a P-M spectrum, the correction factor becomes 0.931., Using

yé

a = 0.925 (2m) (3.61)

Longuet-Higgins showed that the same Gulif of Mexico data was fitted by the
Rayleigh distribution as good as the Weibull distribution,

3.2.5 Nonlinear Non-Gaussian Waves

1. has already been noted that the response (output) of a nonlinear
system is a non-Gaussian random process even though the waves (input) are
Gaussian., Therefore, even though linearization technique works quite well for
many nonlinear systems, marine systems with strong noniinear characteristics,
e.g., tension leg platform, may require the probabilistic prediction of non-
Gaussian random processes. In recent years, several prediction methods have
been made available in the literature that deal with this subject applicable
to ocean structure,

The deep-water waves have been shown to foliow Gaussian distribution from

measurement at sea as well as in the laboratory. A correlation of the
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probability density of time history of random laboratory waves in deep water
is shown in Fig. 3.10. Note that the wave follows a Bretschneider spectral
model. On the other hand, the wave profile becomes highly nonlinear in
shallow water due to the bottom effect, showing excessively high crests and
shallow troughs., This is illustrated in Fig. 3.11. Thus, the histogram in
this case will not be symmetric with respect to the mean value but rather
skewed to the positive side which will increase with the increase in the
severity of the sea.

Bitner (1980) obtained an expression for the probability density function
of the crest-to-trough wave height for non-normal waves., She assumed that the
wave profile is a quasinormal random process and narrow-banded about a central
frequency. The time-varying sine, x((t), and cosine, x.(t), components of the
central frecyuency, however, are considered nearly normal. Written in terms of
a combined parameter, kg, of the sine and cosine components, the probability
density for height H becomes

H He y® T
p(H) = exp( - )L 1+ - + 51Kk (3.62)
R 802 10240° 3262 © 4

where
K,o= (00 = 3) + (% - 3) + (0,222 1)
4 1 2 1 2
_ 4 4 2 2
and
= (xe = %) / (3.64)

The quantity, kg, is determined numerically from np and np. The mean wave
height, H , has a form

k
F=/Z7 [1-g3] (3.66)
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This density function is compared with the Rayleigh dJdensity function in Fig.
3.12.

In the derivation of non-Gaussian wave probability distribution,
assumptions are made that the waves are narrow-banded and the nonlinearity is
weak, For strong nonlinearity, the problem is extremely complicated.

In obtaining the Rayleigh distrivution for the wave heights, the
magnitudes of the statistical properties of wave height are assumed to be
simply twice those of the wave amplitudes. However, more appropriately as
shown abov2, the magnitude of the crest-to-trough heigits should be determined
disregarding this assumption which is often invalid. In this case, the height
is taken ¢s the sum of an upper-envelope value and a lower-envelope value for
the profile that are separated by half the average period. Tayfun (1981) used
this concept to determine the probability density function uf the average of
the two envelope values [namely, a = (a, —a, /2] separated by T/2 where T
= wave period. It i> given as an integral of the joint probability
distrioution p (2a - Eé, Eé ; T/2) and p(T), where p(T) is the period
provability density function. The joint density function between aj, and ap
is written as

5.3 ) 19, (Eﬁzr [ (312’“ 322) ] (
p (a,, a, ; 1) = 1 ] exp | - K 3.67)
1t (1 -r8) 9 - ¢? 2(1 - rd)
- - a;
where a, (>G) = dimensionless amplitudes = — , (i =1, 2),
mO
3 = A(t) a, = A(t + 1) (3.08)
r(x) = /2, 2 (3.69)
p(1) = 2 [ S(w) cOS(u - w )T du (3.70)
0O O
M1) = 2= ) S(w) sin(w - u )t da (3.71)
00

The computation of this expression is very complex, and Tayfun suggested the
following simplification on the assumption of narrow-bandedness around the
mean frequency, w . Then
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The probability density function of a, then becomes

23
- { .
p(a) = 2 g pl 2a - a, , 3, ;

) da, (3.74)

ell=

This density function is plotted in Fig. 3.13 along with the Rayleigh density
function and observed data., It is noted that this density function has a

higher maximum value than kayleigh.

There are several distribution functions available to represent the non-
Gaussian random phenomena, e.g., observed in the wave profiles in finite water
depth. These generally have series representation and are obtained either
from the probability theory or nonlinear wave theory. Examples of non-
Gaussian probability theory distributions are Gram-Charlier series, Edgeworth
series and Lonquet-Higgins series. The nonlinear wave theory uses, for
example, Stokes' wave series. These have been derived by Ochi (1986), Here,
only the essential results will be given,

The Gram-Charlier theory starts with the normal probability density
function and writes a series in terms of the derivatives of the standardized
(by subtracting mean and dividing by standard deviation) normal density
function. This gives rise to the Hermite polynomials. The non-Gaussian
density function then has the form for a random variable with zero mean and a

. 2
variance of o~ as follows:

™o

-X
=
p(x) = e 9 ¢ CMH (%) (3.75)

—
~No

and the coefficients, C, have the following values:

n

A5

i P .3 S
o7 b b= G =0 ty=gr. =gy, b ogT,
2 .
) A A Ay A
6 3 7 34 /
C, =+ ————7xn,(, ==+ 3.76)
6 5! 2!(3!)2 77! 3747 !
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and so on, where H, is the Hermite polynomial of order n, x is the value of a
standardized normal variable

kj kj
AL o= = — .77
" ] N (3.77)
(kz) 2
and kj are the cumulants having the following properties

El(x - w2l =k, = o (3.78)
‘ 3 .

Eh(x - Ll) M k3 (3.79)
i 4,y _ 2

El(x - )] = kg + 10Kk (3.81)
- ; 5 32 *
: 61 _ 2 3

E (x - u) ! = k6 + 15k4k2 + 10k3 + 15k2 (3.82)

and so on. Note that the quantity, Aq in Eq. 3.77 is called the skewness,
and A is equal to the kurtosis minus 3.

It has been shown by Ochi (1986) that the Edgeworth and the Longuet-
Higgins series reduce to the same form, In fact, the normalized Longuet-
Higgins series in terms of non-zero standardized values of

Z' = (x -u) / ol may be obtained by replacing x/c by Z on both sides of
£q. 3.75.

It is interesting to note that the first term of the series reduces to
the Gaussian density function (since Hy = 1. In order to examine the effects
of various terms in the series on the density function as well as their

correlation with a measured severe wave (H 2.05m) record in shallow water

(d = 1.4m), an example from Ochi and Wang i1984) is reproduced in Fig., 3.14.
[t is found that the higher order terms introduce negative density values
(albeit small) at large negative value of the variable, x. Ochi and Wang
concluded from this and many other such correlation that the second term is
the most dominant in the non-Gaussian distribution and the first three terms

best describe the non-Gaussian waves.,

67




1.2

—_——-—1

i TYES W

—— )3, ,\g

GAUSSIAN DISTRIBUTION
=r OBSERVED HISTOGRAM

I/ M

PROBABILITY DENSITY IN

-2.0 -1le6

FIGURE 3.14

-1.2 -0.8 -0.4 0] 0.4 0.8 1.2 1.6 2.0
WAVE DISPLACEMENT IN METERS

COMPARISON OF GAUSSIAN AND NON-GAUSSIAN DISTRIBUTIONS WITH
MEASURED DATA IN SHALLOW WATER [OCHI AND WANG (1984)]




Knowing the initial distributions of the wave profile, the distribution
of the peaks and troughs (including their extreme values) and the wave heights
may be determined. In this respect, it should be emphasized that for
nonlinear waves, e.9., shown in Fig. 3.13, the probability functions for peaks
and troughs are different and should be derived separately. The variance of
peaks is obtained fram the varia.ce of v a3

o, = | ) o, (3.83)
X 6V 7 - 2/ 2 A3

For the variance of troughs, the term inside the parenthesis is inversed. The
probability density function of peaks, £,, is obtained from the expression

~q ] XD ple, s x ) dx
p(e,) = —0— (3.84)

a

§ oIk ] p(0, x ) dx

-0

where p(x, x') is the joint probability density function of displacement and
velocity. The non-Gaussian density function of displacement is known from Eq.
3.75 having a variance given by Eq. 3.83. The velocity, x', is assumed to be
Gaussian with zero mean and variance obtained from a given wave spectrum. The
displacement and velocity are assumed to be statistically independent. The
probability density function of wave heights (peak-to-trough) can be derived
from the convolution integral of the individual density functions of peaks and
troughs,

The linearization technique or the perturbation technique are appropriate
only when the nonlinearity in the system is weak. This allows the response of
the system to be expressed as a Gaussian system, The above examples of
nonlinear waves show that the response of a nonlinear system will not be
Gaussian, For a stronger nonlinear system, the Fokker-Planck equation may be
applied. In this case, no restriction is applied to the degree of
nonlinearity in the system, For a white-noise spectrum, the probability
density function is obtained for a non-Gaussian response. Among others, such
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an analysis was carried out by Ochi and Malakar (1984). They applied this
technique to a single degree of freedom system having the following nonlinear
equation

x + g(X) + h(x) = f(t) (3.85)

where f(t) is the excitation force function for unit (total) mass of the
system. The damping per unit mass is expressed as

g(x) = ax + 8|x|x (3.86)
the first term of which is linear while the second term is the viscous drag
term. The restoring force per unit mass is written as

3

h(x) = wNzx ¥ rx (3.87)

including a linear spring and cubic spring term; wy 1s the natural frequency
vk/m .

The Fokker-Planck equation for this nonlinear system may be derived as

« 3 . 3 LA 32

=X = p(x, x) + = L {g(x) + h() | p(x, x) ]+ T p(x, x) = U  (3.88)

where p(x, x) = joint probability density function of x and Xx , x =
displacement from the mean, X = vertical velocity deviation from the mean,
and S = white-noise spectrum of force, f. This equation is solved
numerically.

Once the joint density function, p(x, x) , is known, the probability
density function, p(x), may be derived following the previously described
method (Eq. 3.84) by applying least square fitting technique. The other
quantities, e.g. density function of peaks, trough, etc., may then be obtained
ac before,

Note that the method is limited by the use of a white-noise spectrum,
Therefore, it is desirable to.find a white-noise spectrum which is equivalent
to the excitation spectrum., Ochi (1986) suggests equating the variances of an
equivalent linear system obtained by superposition and Fokker-Planck equation
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methods and obtaining the equivalent white-noise spectrum. An example of the
probability density function of the peak-to-trough surge motion of a TLP
having nonlinear damping and restoring characteristics in a sea of Hg = 9.15m
is shown in Fig. 3.15. The corresponding Rayleigh distribution on a linear
system assumption is shown as dotted line.

According to the probability theory [Cramer (1970)], the characteristic
function, ¢(x) can be defined as the expected value of eixc . Thus, ¢(x) can
be written as the Fourier transform of the probability distribution function
of the random variable z, i.e., P(z) as follows

¢(x) = ? eiXCP(c) dc¢ (3.89)

-0

It can be shown that the right hand side may be expanded in a power series of
e X% to give

. . 2 N
" (ix " (ix " (ix
¢(X) 1 + ul —!—'2' + UZ -('_2—"’- essse T }Jr ‘T!')_ t eccen

1 2!

. 4 L o4\ r
exp {i L%?l + AZ-L%?l— teeees T AL ;?) + eenas] (3.90)

where u. and Ar are the rth order moment and cumulant respectively. If wu,

represents rth order moment about the mean, then the first eight cumulants
are related explicitly to these moments as follows

Al =0

Y2 T

'3 7 v3

X, = u, = 3u 2

4 4 2

Ag = ug - 10ugm, ) ; (3.91)
A6 = ug - 15u4u2 - 10u3 + 30 By )

A7 = ¥y - 21u5u2 - 35u4u3 —+210x Mo ) ) .

x8 = ug - 28u5u2 - 56u5u3 - 35u4 + 420u4u2 + 560u3 Mo - 630p2

For a Gaussian distribution

f ) |
Hop = Er =y’ (3.92)
2 ri
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Wopg] = 0, rsi (3.93)

and

Ay =¥

Xr =0, r>2 (3.94)
for all r.

The values of moments and cumulants offer a quantitative measure to
determine if a process is Gaussian or not. For a non-Gaussian process,
higher-order approximations are necessary requiring higher moments and
cumulants, Longuet-Higgins showed that Edgeworth's form of the type A Gram-
Charlier series [Kendall and Stuart (1963)] is a good approximation for
nonlinear waves. In terms of the Hermite polynomial of degree r defined as

-2 r-4
_.ror(r-1 t7 r(r-1) (r-2) (r-3) t
Hr - t - 1! 2 + 2! 22 = essse (3.95)
where t is the normalized wave elevation, = /v Ko the distribution

function of ¢ is given by Longuet-Higgins (1963) as

1 2
Vi 2‘t 1+ 1

P(c) = (27k,) L+ kg * G kg * Ty kaZHg) + wannl]  (3.96)

where kr = A / Azr/Z . The full Edgeworth's form up to eight terms has been
given by Huang and Long (1980) as

_1l 1,2
7,2 (1+ % kyHq + 21 kqHy T?U
2
. kg + 10kq . ks + 35k4kq .
720 6 5040 -

2
k8 + 56k5H3 + 35k4

15750 Hg + eeve.] (3.97)

P(z) = (2nk,)

7

+

The series up to the sixth term reduces to Longuet-Higgins' series (Eq. 3.96)
for k. = 0, r > 5, Huang and Long (1980) showed with the 1laboratory
experimental data that additional terms make the approximation worse,
Moreover, even for highly non-Gaussian waves for which the skewness, ki,

approaches one, the four-term approximation in Eq. 3.97 does a good job in
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predicting the wave elevation distribution, This is illustrated in Fig, 3.16,
Another interesting feature evidenced in this figure is that a gentle hump
appears near the mean amplitude of waves given by 1.4‘/§% . This indicates
that the amplitudes of waves have a preferred range of height rather than
appearing completely random. Note that the Gram-Charlier expansion introduces
a slightly negative density value at large negative surface elevation as
discussed earlier,

If the wave field is described by denumerably many independent pure
sinusoidal componenc.s, by the central limit theorem, the probability density
function of the surface profile becomes Gaussian., The sinusoidal components,
however, satisfy only the first-order wave theory and are applicable for wave
slopes, ka, approaching zero (k = wave number, a = wave amplitude).

For many real wave fields, the value of ka is finite and higher-order
nonlinear theories for individual wave components are applicable. One of the
most obvious effects of nonlinearity in waves appears as sharper peaks and
shallower troughs. In this case, the waves are no longer symmetric with
respect to the mean water line and, consequently, the surface elevation will
no longer be Gaussian.

We have already discussed the non-Gaussian distribution using Edgeworth's
form of the type A Gram-Chariier series. It was shown that for steep waves,
the probability density function becomes negative for large trough values.
The other disadvantage of this distribution is that it requires the values of
skewness (k3) and flatness (k) which are extremely difficult to compute.

For nonlinear waves, Tayfun (1980) obtained the probability density
function of deep water second-order waves. He used the standard technique of
transformation of a pair of random variables and the computation of marginal
probability density function from the Jjoint density function (mapping
approach).

Huang, et al, (1983) presented the probability density function for waves
to third order. They used a perturbation scheme on the assumption of small
wave steepness. The third-order approximation for the probability density

function for the surface profile is given by
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- H
n
() = e {5+9——N~°2k2 = (3.98)
7 ' P 3
where
R o= 1+ 3 ofkirf (3.99)
o= N L1 - 2okn + 0% (3t -2) ] (3.100)
N o= 1+ o2k? (3.101)
Ho= N [ n-ok(nf - 1)+ o8% (25 n® - 2n) ] (3.102)
and n is the normalized surface elevation given by
S S ¢ (3.103)

where 7 = 02k to third order. The probability density function denends on o
as well as ok (slope parameter).

Note that ck is proportiona’ to the significant slope, s = o/A where ¢ is
the rms value and A is wave length corresponding to the peak frequency. The
probability density of surface profile for s = 0, 0.01, 0.02, 0.03, 0.04 and
0.05 is plotted in Fig., 3.17., The density values are always non-negative

unlike the Gram-Charlier approximation.

Moreover, a hump is evident for high s values (larger skewness) for n
between 1 and 2. This hump appears because of the constant term in the third-
order Stokes' wave profile and has been found earlier in experimental data in
Fig. 3.16,

A third-order approximation for the density function can be derived in
finite water depth following similar a procedure. In this case, the

expression for p(n) is similar but more involved.

- H 2
S ? ~ 2.2
p(n) = e T ‘ "r L 1 - 302;2 hS ] _ Jw; k 1 } (3.104)
v om Rs 2Ny RS5 s Y Rs3
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where the subscript s stinds for shallow water and

N = (1 + ofkPsyPsy) /2 (3.105)
Sy = coth kd (3.106)
5, = 3.5222?39, (3.107)
sinh™ «d
Sp= 1 r et S —_— (3.108)
sinh® d sinh  kd 8 sinh” kd
3 2

Sy =1+ {1+ E-;T;;?—;g ) (3.109)
Ho = N D= ok ((Sy+ 507 - sy

v otk Clalsy 4 5 )% - 2 snd - 2sy (S, - Spn] ] (3.110)
h = Sy - ok (2505, + 25, - %—Sz)n (3.111)
D= 1= 20k (5 + S))n+ oPkZL6(s, + 507 - 25,10’

- 20%K%5 (5 + 5)) 1N (3.112)
Jo= 25 (5,8 -7 S, (3.113)
RS =1 + okH h (3.114)

In this case, additional dependence on the depth parameter, kd is clear., One
should note, however, that the Stokes' higher order waves have limited

applications in shallow water.

The non-Gaussian response characteristics of an offshore structure may be
linked to the nonlinearity in the wave kinematics, as discussed earlier, as
well as the free-surface fluctuations of the water at the structure free-board
and the nonlinearity in the f .rce due to the presence of the drag effect. The
first of these make the waves non-Gaussian., The effect of the free-surfa 2
fluctuations is that the loading on the structure is intermittent near the

mean sea ievel and 1is therefore noc longer Gaussian, Thus conventional
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spectral analysis is no longer sufficient to fully define the response. The
spectral analysis indicates only the variance. Higher order moments of the
response must be known for a complete probabilistic description of the
response in terms of its mean, variance, skewness and kurtosis coefficients.
The nonlinear forces make the response non-Gaussian,

Kanegaonkar and Haldar (1987) analyzed the dynamic response of an
offshore platform of the jacket type. The equation of motion was written in a
matrix form for a lumped mass system. The nonlinearity was introduced in the
relative-velocity drag term which was linearized in terms of a relative
velocity rms value. The analysis considers the free-surface fluctuations and
their effects on the spectral and probabilistic anaiysis.

Near the mean water level where the structure is intermittently loaded,
the horizontal water particle velocity is given as

U= uH(n - y) (3.116)
where u is the effective velocity, u = velocity by the Stokes' wave theory
and H = Heaviside unit-step function. Assuming that the effective velocity is
stationary, Tung (1975) showed that the approximate spectral density function
of velocity is

o, 2 5
Solw) = (5=) [ sz(8) + Z(8) ]°S(w) (3.117)
n
where
g = JOL (3.118)
n
] g%
z(B) = exp( - 5 ) (3.119)
and
Z(8) = [ z(g)dg (3.120)
£

Also, the acceleration spectra
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Se(u) = W 52(w) (3.121)

-

Bascd on this effective velocity, u , the equaticn of motion is modified and
th? spectral density of the displacement is obtained in terms of Sa(w) and
Sﬁ(w) , the frequency transfer function and modified and linearized Morison
equation, These then were used to express the first four moments (mean,
variance, skewness and kurtosis) of the load which are necessary for the
probabilistic analysis., The derivation is shown by Kanegaonkar and Haldar
(1987).

The unknown non-Gaussian distribution for the displacement response can
be assumed to be a mixture of a set of distributions, P;, each one having a

weighing factor, w;, associated with each so that

I

Tow, =1 and w. >0 (3.122)
The distribution, P;, is chosen such that it has the same mean and variance as

the net distribution, P

the form

The response distribution, P is assumed to be of

X. x,

Px = wlPl + w2P2 (3.123)

where Py standard normal and P, = shifted exponential distribution given by

its density function

pp(x) = 5 exp (5] (3.124)

)

For this distribution, mean = o + g, variance = 8“ , skewness = 2.0 and
kurtosis = 6.0. Through numerical examples, it was shown that if the surface
fluctuations are included in the analysis, the hign seastates yielded wy =
0.3. On the other hand, at low seastates as well as without fluctuations, the
displacement of the  jacket structure at its deck was Gaussian

(w1 =1, Wy = n) . The non-Gaussian distributions showed significant
deviations from the Gaussian at the upper tails with much higher probability
of exceedance values for the same displacements. The rms values were slightly
reduced, The skewness and kurtosis were near zero at lower significant wave

heights and increased in value as the height increased.
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3.2.6 Wave Period Distribution

The probability functions for evaluating the statistical properites of
the ocean wave periods have been derived by Longuet-Higgins (1975), Cavanie et
al. (1976) and Arhan, et al. (1976). They derived the joint probability
density function of wave height and period. Once the joint density function
and the individual density function of one of the variables, namely the wave
height, is known, the density function for the other single variable, namely
the wave period, is simply the marginal probability density function ot the
joint distribution. Longuet-Higgins derived the density function of the zero
crossiny period while Cavanie, Arhan, et al. (1976) obtained the density
function of the crest period (between the maxima).

Defining a nondimensional period having a mean of zero-crossing period,

e (3.125)

-m

T (3.126)

p(r) = (3.127)
2(1 + n¢) 3¢
The probahility density is symmetric about the mcan period having a bell-
shaped curve similar to a normal distribution,

It is noted from the definition of n, that the period T becomes negative
for » < -‘l/u} . Therefore, in order to limit the probability density to the
positive periods, n should be truncated at n = -(1/0) . In this case, the
probability density function of n becomes [Ochi (1982)]

77




i, 2
p(n) = 14y 12 b R e - l< n<« (3-128)
(1+71+2) (@T+m) ™7 °

In dimensional form, the density function of T is

DTy = et K (1) 0¢T<e (3.129)

The Longuet~Higgins formulation is based on a narrow-band spectrum. On
the other hand, Arhan, et al, obtained an expression for a wide band spectrum
in terms of the parameter, e, The probability density function for the time
interval between two maxima is given in terms of dimensionless period is

(1) = S R (3.130)
pit (2.2 2+ &2 7 T y

where 7 =T / Tﬁ . Tﬁ is the expected time between two Successive positive
maxima given by

v 2 m
Tosdn (L=t ) (e (3.131)
L2 2
+ 1 - ¢
« = % (1+71 - ¢ (3.132)
&
b o= ——— (3.133)
'/1 - €

Note that for ¢ = 0, a = 1 and 8 = 0, and the probability density function
does not exist. A comparison of this relationship with that derived by
Longuet-Higgins was made by Goda (1978) assuming t = n. The correlation
showed that at least for small correlation coefficient values (e between 0.5
and 0.7) between H and T, there is little difference between the two forms.
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3.2.7 Wave Height-Period Distribution

While it is important in a statistical analysis to know the wave height
distribution and maximum wave heights, in a response analysis the joint
distribution of the wave heights and periods is often needed. The statistical
description of the sea surface is usually divided into short-term and long-
term statistics. The short-term seastates are wusually assumed to be
stationary even though the seas are often expected to vary over a few hour
period. For a varying seastate at a given location, the probability
distribution of the height and period of the highest wave has been derived by
Krogstad (1985). Consider a wave record over a time period, Tp, during a
constant seastate, s, where the individual wave height and period are denoted
by {(Hj, Tj)s ¥ =1, « . « N}, and Hg,, is the maximum of all the heights.
The CDF of H; with the seastate, s is given by

P(Hj < H) = F(H,s) (3.134)

If the wave heights are independent

€

P(Hpay < H) = F(H,s)N (3.135)
Assuming
1 M2

the maximum wave height in a time interval [O,TR] is

P(H .. < H) = F(H,s)TR/Tz (3.137)

max
If s varies over [O,TR], then the interval is partitioned into subintervals
over which the seastate is constant and in the limit
Tr
dt
P(Hmax < H | [O,TR]) = exp { jo log F [H, s(1)] T;T?T } (3.138)

The conditional probability distribution for the period of the maximum

wave is identical to the conditional probability distribution of the wave

period for that particular seastate and wave height, p(T|H,s). The
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conditional probability distribution of T,,, for given H .. for the whole time
interval which is partitioned into subintervals is given by

W =2

p(T|H = Hm ) = p(T|H = Hm . Si) X p(Hmax occurred in Ii) (3.139)

ax ax

i=1

which reduces to the following form for max (alj) » 0
TR

| g7 109 F [H,5(x)] p(TH,5(1)] de/T(x)
PITIH = Koy ) = ——— (3.140)
! o5 Tog FIH,s(x)] dv/T (x)

If the distribution of the seastate is known and is equal to P(s) where [P(s)

ds = 1 for an observation time, Tp, then

P(Hoax < H) = exp { Tp [ P(s) Tl-109 [F(H,s)] ds } (3.141)
z
and
/ P(S)'a% lTog F(H,s) p(TIH,s) ds/T_(s)
PTIH = 1) = o (3.142)
| P(s) ET']Og F(H,s) ds/TZ(s)

Now we require the short-term distribution functions F(H,s) and
p(T[H,s). Assuming F as a function of Hg only, Forristall (1978) gives

F(H,s) = 1 - exp {-(4H/Hg)%/ 8} (3.143)

This is a two parameter Weibull distribution. It corresponds to the Rayleigh
distribution for a« = 2 and 8 = 8, However, for extreme value analysis, it is
the upper tail (H > Hs) distribution of wave height that is important, not the
overall distribution, Thus, we are interested in the values of o and B8 that
fit the upper tail.

Considering the normalized variable

4H
x = ——maX (3.144)

H
S

where HS ic an estimate of Hg, x s modified by

80




- % 1/2
X = (4Hmax/HS) (Vog NO/]og N) (3.145)
where No is fixed and N = TR/TZ. Then x has a CDF of
a NO
F(x) = [ 1 -exp (-x/8) | (3.146)

The parameters a and g are computed from a plot of log [-log (1 - Fl/NO)]
vs. log(x). Based on the Norwegian Sea wave rider data, these values are
obtained as shown in Table 3.1, Note that these values are quite different
from the Rayleigh distribution parameters, o = 2, and 8 = 8.

The joint height-period distribution in a record was obtained by Wooding
(1955), Longuet-Higgins (1975), Ezraty, et ai. (1978) and Chen, et al.
(1979). Both Longuet-Higgins and Ezraty, et al. assumed a narrow-band,
Gaussian model, Longuet-Higgins' formula is easy to apply and shows symmetric
distribution in the wave period. On the other hand, Ezraty, et al. showed a
complex distribution form which is difficult to apply. They found an
asymmetric distribution with respect to period, but the distribution is a
function of the spectral width parameter, ¢, depending on occasionally
unstable fourth-spectral moment, my. The conditional probability distribution
of the wave period following Chen, et al. (1979) is assumed to be normal,
N(u,oz) where

C.7, (3.147)

=
1]

and

0=CT. (3.148)

The values of Cu and C, were found to be functions of T, only as shown in

Table 3.2, These values are shown as functions of Tp in Table 3.3.

The numerically computed expectation of H coincides with the

max
asymptotic relation derived by Forristall (1978)

E(H __/H.) = 0.25 (glogN)l/®

max’Hs [1 + 0,8722/(alogN)] (3.149)

81




SITE
LOCATION

Utsira
Halten

Tromsoflaket

BEST FIT VALUE OF a« AND 8

TABLE 3.1

FROM OFFSHORE NORWAY WAVE DATA

>5

>5

>5

NO. OF

RECOROS

230

405

384

2,37

2.50

2.38

[=®

12.5

15.6

12.9




TABLE 3.2

VALUES OF Cu AND C_ VERSUS T,

IN THE EMPIRICAL DISTRIBUTION OF WAVE PERIOD

CORRESPONDING TO MAXIMUM HEIGHT

1.50

1.41

1.32

1.30

1.20

0.50

0.39

0.30

0.25

0.23




TABLE 3.3

VALUES OF Cu AND C_ VERSUS Tp
IN THE EMPIRICAL DISTRIBUTION WAVE PERIOD
CORRESPONDING TO MAXIMUM HEIGHT

Tp(s) Cu C(j
6 1.05 0.26
8 0.94 0.21

10 0.89 0.19

12 0.85 0.20
14 0.82 0.22

16 0.76 0.26

13 0.79 0.30




Note that this expression reduces to Eq. 3.37 for o = 2 and 8 = 8., An example

of the joint distribution of H,, and T ... 1is shown in Fig, 3.18 for given Hg

X
and T,.

The distribution in Fig. 3.18 shows that it is symmetric around the mean
period, T,. However, field data have shown that the joint distribution is
generally asymmetric [cf, Chakrabarti and Cooley (1977)]. Longuet-Higgins
(1983) revised his earlier derivation by introducing an asymmetric Jjoint
distribution of wave amplitudes and periods. This revised distribution also
depends on the first three moments of wave spectrum (mo, my and mp) which are

simpler to use.

Defining nondimensional wave amplitude and period as

T
5 = —_m s = - (30150)
(2m0) ) T

where T = 21rm0/m1 , we can write the joint probability density function

2 1, 2 2
- 1+ (1-= / L(v)
p(g, n) = ffé-—éie " ( “) s (3.151)
N

and L(v) is defined as a normalization factor to account for positive n

L(v) = (3.152)

2
(1+71+ W2 )
Note that for small v, L =1 +-% v

symmetric about the mean period, independent of the normalized wave

2 and at v =0 , the distribution is

amplitude. Joint density plots for low and high v values are shown in Fig.
3.19, Note that at v = 0.1, it is almost symmetric about n = 1, while at v =
0.6, it is not.

The density function of the wave amplitude may be obtained by integration
with respect to the period n over its positive range

2
p(g) = 2ee™ L(v) of=) (3.153)
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FIGURE 3.18  JOINT DISTRIBUTION FUNCTION OF Hy,, AND Typa, FOR Hg = 8m, T, =
95, AND A TIME INTERVAL OF 12 HOURS
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FIGURE 3,19 WAVE HEIGHT-PERIOD JOINT DENSITY PLOT FOR NARROW AND WIDE-BAND
SPECTRAL WIDTH PARAMETERS [LONGUET-HIGGINS (1983)]




where ¢ is the well known error function. Thus, the density is almost
Rayle.gh differing by the factor Lw(%) which is small for small v, The
density of the period n may be similarly obtained by integration with respect
to £ over its positive range,

p(n) =t [ 1- (1 -1)% 2]

2vn

-3/2 (3.154)

The conditional distribution of n for a fixed value of ¢ may be found as

p(nlg) = Ei%ff?l (3.155)

Lindgren and Rychlik (1982) derived approximate expressions for the joint
distribution functions of crest-to-trough heights and periods of a stationary
random process irrespective of its covariance or spectral structure, The
process, however, was assumed Gaussian with mean zero., They compared their
solutions with the approximate theory of Cavanie', et al. (1976), who
considered only the positive maxima, thus ex~-luding the shorter waves. It
works for relatively narrow-band spectra (e < 0.7) and agrees with an
cpproximation of an exact model process shown by Lindgren and Rychlik. The
latter method requires time-consuming numerical integration, but can handle
many practical cases including 1low-frequency noise and bimodal spectra.
Another approximation based on a simplified model has also been developed by
Lindgren and Rychlik and is simpler to use and is similar to the Cavanie'

approximation in accuracy, but includes shorter waves,

Nolte (1979) derived the joint probability density function including an
additional order of approximation for the wave period which provided better
agreement with the measured data [Nolte and Hsu (1979)].

Truncating the joint probability density function at n = --% in order
to avoid negative period, Cchi (1982) showed
2 2
1 1 2 £°(1 +1n7)
p(g, n) = £ exp | - 2=t | (3.156)
1 - o(- 5/v) ¥ 2n

3.2.8 Extreme Wave Height - Steepness Distribution

The extremely high waves 1in deen water are responsible for capsizing
smaller vessels as well as for damaging marine structures with their slamming
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loads. Thus, the estimates of the encounter probabilities of occurrence of
these waves are very important from the design point of view, These waves are
invariably asymmetric, In describing these individual waves, one would
require additional parameters besides wave height and wave pariod. Myrhaug
and Kjeldsen (1984, 1987) presented the following three additional parameters
to describe their steepness and asymmetry:

(1) Crest front steepness, ¢

n

c
£ T ————— (3.157)
(«g-;)T ™
where ne = crest elevation measured from MWL, and T' = time between crest and

zero-upcrossing.

(2) Vertical asymmetry factor, A

Tll
A= -T-r (3.158)

where T" = time between crest and zero-downcrossing so that T. = T' + T",
(3) Horizontal asymmetry factor, wu
e
ve = (3.159)

Thus, the estimation of the probability of occurrence of steep waves
should include these parameters. Myrkhaug and Kjeldsen (1987) derived the
joint distribution of crest-front steepness and wave height. The joint
probability density distribution for this purpose may be written as the
product of the marginal density distribution of wave height and the
conditional distribution of wave steepness:

A ~ A A

p(e, h) = p(elh) p(h) (3.160)
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where h = H/Hrms and ; = e/ermS normalized height and crest steepness
respectively, p(h) 1is marginal probability density of h and p(e|h) 1is the

conditional density distribution of € and h .

Based on the measured wave data on the Norwegian continental shelf, the
Wiebull distribution was found to be suitable for p(ﬁ) . For the conditional
distribution, both Weibull and log-normal distribution were found to work
equally well.

The Weibull probability density function for a parameter, x, is given by
X y X
p(x) = Zo— [ - (=) ] (3.161)

where g, and p, are the Weibull parameters. For By = 2, one obtains Rayleigh
distribution.

The log-normal probability density distribution is given by

2
1 exp| (In x -zex) ] s x>0 (3.162)

Y 2n v X 2vx

p(x) =

where &, and VXZ denote the mean value and variance of In x, respectively,

The rms values, enqo and Hp.,o used in the normalization were obtained by
fitting data as

Hrms = 2,8582 ¢ m0 (3.163)
and
my
€png = 0:0202 + 32,4k 5 x = ——— (3.164)

9'/0

Thus, « is related to a steepness parameter, « = Hs/ 4gT22 .

Use of Weibuli distribution as the marginal distribution of B from data

gave

of, = 1.05 and £f = 2.39 (3.165)
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The Weibull distribution fitted to the conditional distribution of ¢
given h for the Norwegian shelf data, yielded the following functional

relationships
) 2 )
1.37 - 1.10h + 0.57h  for h < 1.9
p.(h) =
€ 0.36 tan~! [2.80(h - 1.9)] + 1.34  for h > 1.9 (3.166)
B.(n) = 0.56 tan™ ¥ [3.57(h - 1.7)] + 2.28 (3.167)

€

On the other hand, the log-normal distribution fitted to the conditional

distribution of the same data gave the following relationships for the

parameters 6 and Y2 .

A .2 )
0.024 - 1.065h + 0.585 h for h < 1.7
6.(h) =
€ 0.32 tan™! [3.14(h - 1.7)1-0.096  for h > 1.7 (3.168)
v.2 = 20,21 tan"! [2.0(h - 1.4)] + 0.325 (3.169)

€

Both these models fit the data reasonably well. However, the log-normal
distribution seemed to do better at the higher values of ¢ and h , The
estimates of the probability of occurrence of extremely steep waves were

significantly higher for the log-normal conditional distribution.

3.3 SHORT-TERM RESPONSE PREDICTION

The short term is defined as the period of time in which the ocean waves
may be considered stationary and ergodic. Thus, a given wave record and a
corresponding energy density spectrum is needed to describe the short-term
probabilistic properties of the sea of a particular severity level,. The
severity level may be described by the mean wind speed or the characteristic
wave height (H) and wave period (T,). The duration of a short-term sea is
typically a few hours whereas the wave record is typically on the order of
30 mins. long.
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The short-term response analysis is then based on the short-term waves.
If a frequency domain analysis is possible, then only the wave energy density
spectrum is required. In the case of a numerical time domain analysis, a time
history of the short-term waves is needed. It has already been shown how the
time history may be generated from a wave spectrum, If a time domain analysis
is performed where a frequency domain solution is not possible, then the
amplitudes of the response time history may be fitted to a distribution
function to generate the short-term distribution of the response. This method
may be used in the short-term prediction of a nonlinear system, It is,

however, time consuming,

For a linear system in which the response is linearly related to the
waves, a spectral analysis provides all the necessary information regarding
the responses, as will be shown shortly. For a nonlinear system,
approximations are often made in both frequency and time domain analysis. The
approximation chosen depends on the extent and complexity of the nonlinearity
in the system. The majority of the work on norlinear problems deals with the
short-term responses and the statistics related to the short-term responses.

Section 3.2 is the longest section of Chapter 3 as most of the available
techniques on handling nonlinear problems in offshore mechanics are reviewed
in this section. In some cases, brief derivations of the equations for the
statistical probabilities are shown., While a few distribution (or density)
functions for the response time history are shown, the important aspect
addressed here is the probability distribution of the amplitude of response.
0f course, once the distribution is known, the distribution of the maximum
response amplitude at a chosen probability Jevel may be easily determined.
Methods of projecting this short-term response to a long-term response,
corresponding to the design life of the structure under consideration, are
briefly outlined in the following section.

3.3.1 Linear Systems

The inertia force on an object including the forces obtained by the
linear wave diffraction theory 1is a linear force. The inertia part of

Morison's equation can be written for a vertical cylinder per unit length as

Frlt) = ky u(t) (3.170)
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where U (t) is the water particle acceleration. Under linear wave theory

G(t) = - LR LB sin (kx - ut) (3.171)
or

. _ cosh ks 79\

u(t) = gk Tosh kd n(t + T/4) (3.172)

where T is the wave period and T/4 in this case represents a phase lead of
90°, i.e. the acceleration is zero at the wave crest. Therefore,

Fr(t) = ky ok %%2{}{5} nggo (t) (3.173)

Then writing the covariance of f; in terms of the covariance of n and taki g
the Fourier transform of both sides

S¢ (w) = Hil(w> S(w) (3.174)
where
He = kyy ok %%%E%g} (3.175)

I

The significant amplitude of the force is obtained from the area under
the response spectrum curve,

fo = 2 VT S; (w)dw (3.176)

Assuming a mean period of 9 seconds and a short-term period (TR) of 2.5 hours,
the probable maximum value of the force amplitude (for 1000 waves) is

foax = 1486 f¢ (3.177)

In usual extreme value analysis, the maxima (or minima) are assumed to be
uncorrelated and statistically independent. This may be a crude approxi-
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mation. If the random process under investigation is Gaussian and narrow
banded, then one may work with the derived process, namely, the envelope of
the narrow-band process. The neighboring maxima of an envelope process are
generally not as well correlated as those of the underlying process.
Moreover, the extreme values of the envelope process may be taken as an upper
estimate of the extreme values of the base process, Naess (1982) developed
analytical formulas for the envelope process of a narrow band Gaussian
system. Assuming that the random variable under investigation is given by
x(t) for a time interval, Tp, the expected maximum value of x(t) is given by

Elmax x(t)] < My (n +-%) (3.178)

where G denotes the Euler's constant, G = 0.5772, and n is obtained from the
solution of

2 an(xkn N) (3.179)

=3
I}

where N = number of maxima in x(t), and

2 VT = P2y /T =% (1 + /T2 )} (3.180)

~
It

e = spectral width parameter, p = correlation coefficient defined as

ml2 )
p = (3.181
Mo™2
and the spectral moments, My, are defined by
m o=/ W S(w) dw n=0,1,2, ... (3.182)

0

It was shown through numerical examples that the introduction of statistical
dependence between heighboring maxima (through p) into the extreme value
prediction generally leads to a decrease of the resulting extreme value
estimates,
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3.3.2 Nonlinear Systems

When the response function has a nonlinear relationship with the wave
amplitude, the system is called nonlinear., Thus, when drag is present in a
system, it constitutes a nonlinear system. The same is true for nonlinear
damping for a moving body. In these cases, approximate methods are employed
in predicting extreme resporse values, One of these aroroximations is a
series representation of the nonlinear term so that only a few terms in the
series require consideration, depending on the extent of nonlinearity. If
only the first term of the series is retained, then the system is called
linearized.

3.3.2.1 Wave Drag

In the case where drag is important and cannot be ignored, the conversion
of the wave spectrum to the response spectrum is not straight forward. In
this case, a linearization technique is often used for the drag force.

Since the drag force is proportional to the square of the velocity, the
linear approximation of the normalized drag force is written as

Ix(t)|x(t) = Clx(t) (3.183)

where x(t) = u(t)/o, and o, is the rms value of the velocity profile.

u
Assuming that wu(t) is normally distributed with zero mean and standard

deviation, o,, the most accurate linear estimate of |u|u gives

¢, = /-g_ (3.184)
Similarly, the cubic approximation

Ix|x = Clx + C3x3 (3.185)
will yield

c =2, oy L (3.186)
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The quintic approximation

|x|x = Cix + C3x3 + C5x5 (3.187)

will give

3,2 1,2 _ 1 77
G=2'5 G333, Cs= -5/ % (3.188)

In terms of the dimensionless quantity, x = u/o,, the linear approximation
does a fair job for |x| < 2; that is, if the velocity is within $20,. Since
according to normal theory this happens 95% of the time, the linear approxima-
tion will do a good job of estimating the spectral density most of the time.

The cubic approximation is quite an improvement over the linear expres-
sion, yielding results accurate to more than 3¢,. The quintic approximation
is only slightly better than cubic producing results accurate to nearly 4o,.

3.3.2.2 Wave-Plus-Current Drag

When current is present and drag is not negligible compared to inertia,
then the relationship between the wave force and wave profile is further
complicated by the presence of current, Y. If the current 1is considered
uniform and flows in the same direction as the wave (or opposing it, in which
case U is negative) then the drag force per unit length of a vertical cylinder
is written in terms of the relative velocity between current and water
particle velocity.

fD(t) = kD lu(t) - U,[U(t) - U] (3.189)

In Eq. 3.189 the current is in the opposite direction of the wave. In
the presence of current, the mean value of the relative velocity is not zero
as before, In this case, the linearization is more complicated. If we
approximate v|v| as

Vv = Cy+ Cpv (3.190)

91




2

where v = u(t) - U, u, is the mean value of v, and o,° is its variance about

the mean, then

€ = (03 - uf) 2e(y) -11-2u, 0 ¢ () (3.191)
and
Ch=2u,[2e(y) -11-40, 0(y) (3.192)
where the mean value u, = -U and vy = -U/g, is the strength of the current.
The quantity, ¢(x), is written as
e-x2/2
¢(x) = (3.193)
V2
whereas 9(x) is given by its integral and known as the error function
X e-t2/2 X
o(x) = | dt = [ ¢(t) dt (3.194)
N T -

3.3.2.3 Structural Dynamics Response

When a structure responds to waves, the motion of the structure results
in a relative velocity between the wave velocity and the structure velocity.
The modified form of the Morison equation is used in analyzing structural
dynamic response in random waves.

In many cases, the structural motions are small compared to the water
particle motion. Assuming that the response velocity is small compared to the
water particle velocity, the ponlinear drag term is expressed in a Taylor
series, and higher order terms in structural velocity are neglected.

(u - x) = |ulu - 2]|ulx (3.195)

lu - x

Further the term involving absolute values of u are replaced by their
polynomial approximations

3
[ufu = V" 2/7 o u +-% 2T L (3.196)

u u
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ful = V' 8/7 o, t o 2/ (3.197)

o}
u

The parameter, «, is introduced in Eq. 3.197 which indicates a small
fluctuation in damping about its time average. On using these approximations,
the solution may be obtained by a perturbation method.

A second method, known as an equivalent damping method, transforms the
equation of motion to its fundamental resonance mode and uses the
approximations of the wave drag force outlined above, including a time varying
damping in a series form. An equivalent constant damping is obtained as a
first approximation by replacing the time varying terms with equivalent
constant term, The equivalence 1is obtained in terms of work done over a
cycle, To a first approximation, the resonant response as well as the
nonresonant response are considered to be Gaussian,

The linear and cubic estimates of the spectral density of the wave drag
force on a cylinder of unit diameter and unit length are shown in Fig. 3.20.
For this example, the random wave 1is chosen as having Hg = 24m and
T, = 14 sec. The spectrum is computed at the surface and 40m below the
surface, It is seen that the cubic representation of the drag force provides
more energy at about 3 times the predominant frequency. This gives rise to
the super-harmonic response of the structure at higher frequencies in waves.

Eatock Taylor and Rajagopalan (1981) compared the method of equivalent
linearization for the nonlinear term with the complete nonlinear time history
simulation, They found that the response spectra produced by the
linearization technique may be underestimated, particularly in high waves,
Inclusion of the cubic term significantly improves the estimation,

Dao and Penzien (1982) investigated the effect of linearizing the drag
force through an example where a single degree of freedom system was subjected
to a harmonic excitation. They considered the forcing function for the second
order 1linear differential equation to be nonlinear and composed of the
modified relative velocity model of the Morison equation. Three different
cases were considered; (1) the coupled relative velocity form of the nonlinear
drag term, (2) the uncoupled nonltinear drag term and, (3) the linearized form
of the drag term.
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In the second case, the drag term was uncoupled, assuming that the water
particle velocity 1is much larger than the structure velocity, e.g., for a
jacket structure. Then the approximation takes the form given by Eq. 3.195.
The quantity |u|u is replaced by a Fourier series by writing u = ug cos wt and
using

|cos wt| cos wt L a cos mat, m=1, 3,5, « « & (3.198)

m

where
-8/[mn(m2 -4)) form=1,5,9, « ..
a_ = (3.199)
g/lmn(m? - 4)] form=3,7, 11, . . .

Also, |u| is replaced by its temporal average,

(3.200)

ERI

lu| = uolcos wt] = v Ug

Thus, the nonlinear terms are linearized and the equation of motion can be

solved for x(t) in a series form as functions of mwt.

In the thira case, linearization is achieved by writing

. .

lu -~ x| (u - x) = Cylu - x) (3.201)

where C; minimizes the error in a least square sense. The value of €y is

given by
Lv, |v,l]
c, = R R'° (3.202)
A
R
If Vi (= u - i) is assumed harmonic, then
C1 = 1,20 o, (3.203)

R
where ovR is the rms value of Vi Once this linearization is introduced 1in

the equation of motion, the expressiun for x(t) may be obtained in terms of

OVR which may be solved by an iterative technique.




The numerical results for a single degree of freedom system in regular
waves showed that the first two solutions are quite close while the linearized
solution produces large error. The analysis was then extended to random
raves, For random waves, the extreme values of the response were found to
closely follow the Gumbel Type 1 distribution given by Eg. 3.8. This was true
irrespective of the method of representation of the drag force. In random
waves, the mean square values produced by the three methods are similar, while
the mean extreme value determined by the linearized method can be as low as

65% of the maxima for large values of H./D (> 20).

Dunwoody and Vandiver (1981) predicted the dynamic response of offshore
structures to the random wave excitation. The response included the effect of
the separated flow drag force in terms of the relative velocity formulation.
The equation of motion had the form simitar to Eq. 2.67 with the nonlinear
damping replaced by the relative velocity terms. The drag term of the Morison
formu1a was approximaied by a cubic polynomial 1in the relative velocity
between the fluid and the structure. Thus, following an approach similar to
that developed by Borgman (1969) the relative velocity drag is written as

[VR(VR = ClVR + C3VR3 (3.204)

where vp = U - X,

The coefficients C; and C3 have the values

—
¢, =" 309 (3.205)
R
and
-2 1
Cy = M?T (3.206)
R

which are equivalent to Borgman's expressiors with o as the rms value of

v
Ve The correlation betwren the nonlinear term anthhe approximation in
Fo. 3,204 is quite gonod over a large range of OVR (up to about 3) as shown in
Fig. 3.21. The cubic term is handled through the convolution integral (see
next section) sim.2ar to Rorgman ercept fcr the relative velocity form, The

solution is obtai..d by iteration due to this coupling, The linear and
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nonlinear components of the hydrodynamic force spectra for a single degree of
freedom of cylinder motion in a random fluid field are shown in Fig. 3.22.
Note that at the low frequency, the drag contribution is large. The quantity
a is the ratio of the fluid added mass tc the sum of the cylinder mass and the
added mass, while ox is the rms value of the cylinder velocity. The linear
term is proportional to the fluid velocity spectrum only.

Sigbj8rnsson and M8rch (1982) analyzed the effect of the second term of
the series (cubic approximation) representing a nonlinear drag term that
includes the three-term convolution of the autospectral density of waves. The
main peak of the wave force spectral density appears at the modal frequency.
From the series expression, Eq. 3.204, it is evident that superharmonics may
appear in the load spectral density in frequency bands near 3, 5, 7, « . .,
respectively times the modal frequency of a single peaked wave spectral
density. Inciusion of the Tlowest superharmonics made the 1load spectral
density bimodal., This method was applied to the example of a jacket-type
fixed tower which was permitted to deflect.

A JONSWAP type wave spectrum was chosen for this purpose, as shown in
Fig. 3.23, having a significant height of H. = 15m, a modal frequency of
wg = 0.35 rad/sec. and a peakedness parameter of y = 3.78. The autospectral
density of drag forces acting on a 0.5m diameter vertical pile at different
elevations is given in Fig. 3.24., The computation includes two terms of the
series approximation for the drag force. No secondary peak is visible close to
the free surface. This is because the linear contribution of the drag force
is large and overshadows the convolution contribution., 1In deeper waters the
secondary peaks become clearly visible because of the slower depth attenuation
of the cubic contribution compared to the linear one. The auto spectral
density of the total load on the pile (including inertia) shown in Fig. 3.25
has the same general trend as the drag force spectral density. This is a
result of drag force dominance in this case. However, a certain amount of
reduction is seen in the relative size of the secondary peak because of the
presence of the inertia forces.,

Table 3.4 shows the mean square (ins) force contributions due to the
inertia forces and the linearized and nonlinear (second-order) drag forces,
respectively, for different water elevations fdepths). The nonlinear drag is

ottained from the three-fold convolution contribution of the energy density
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TABLE 3.4

MEAN SQUARE WAVE FORCE COMPONENTS
FOR VERTICAL PILES FOR A JONSWAP SEASTATE
SIGNIFICANT WAVE HEIGHT = 15m; MODAL FREQUENCY = 0.35 rad/s
[SIGBJORNSSON, ET AL. (1982)]

LINEAR NONL INEAR

DEPTH DIAMETER INERTIA DRAG DRAG

() (m) FORCE FORCE FORCE
0 0.5 29,6 60.4 10.0
5.0 96.3 3.2 0.5
10 0.5 20.1 68.5 11.4
5.0 96.2 3.3 0.5
50 0.5 37.0 54,0 9.0
5.0 98.3 1.4 0.2
100 0.5 58.8 35.3 5.9
5.0 99.3 0.6 0.1
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spectrum (second term of the series approximations of the nonlinear drag
force). The results are given for two different pile diameters. The
contribution due to the nonlinear term is not significant for the inertia
dominated pile, D = 5m, as can be expected., In fact, even the linear drag
term is of secondary importance compared to inertia. For the drag dominated
pile, D = 0,5m, the nonlinear term is only about 15% of the linear drag term.

These examples indicate that the stochastic 1linearization method
represents the mean squared wave forces quite reasonably for engineering
purposes. However, the "super harmonics" present in the drag forces may
produce secondary spectral peaks which may be extremely important in the
evaluation of dynamic structural responses.

Let us illustrate this by the following example of a structural
response. Assume a jacket structure in 300m water depth having a fundamental
natural frequency, wy = 1.05 rad/sec., and a corresponding modal damping
factor, ¢ = 0.027. The displacement of the deck of the structure due to the
JONSWAP wave of Fig. 3.22 was investigated by Sigbjarnsson and Morch (1982)
in terms of a single degree of freedom linear equation of motion, but with
nonlinear excitation derived earlier, Assuming that for a fixed offshore
platform in severe seas, the water particle velocity is much larger than the
structure velocity, or in other words, E[Ju[] > € [|x|] , the matrix equation
of motion of the platform is

mx + ClU[x + Kx = F(t) (3.207)
The displacement spectrum is obtained from
T*
Sx(m) = H(w) S(w) H' (w) (3.208)
where
H(w) = [ K= B+ quc v 2, 17 (3.209)
where the superscript, T, refers to transform and a star refers to the complex

conjugate, The autospectral density of the deck displacement is shown in
Fig. 3.26. The secondary peak in the loading spectra, being in resonance with
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the fundamental natural frequency of the platform, produces a sharp secondary
peak in the displacement spectra., Thus, in designing fixed platforms, the
fundamental natural frequency of the platform should be matched against the
superharmonic frequencies of the drag force contribution to investigate the
possibility of amplification. If such possibilities exist, then these terms
may have to be included in the analysis of the response. Of course, the
higher order terms may make the analysis extremely complicated and time
consuming., A time domain simulation would, of course, include these effects
explicitly.

For fixed platforms that respond statically, the extreme value analysis
is carried out 1in the wusual way by computing the short-term force
distributions on the platform and quasi-static structural and foundation
analysis. However, deepwater platforms may be excited at the lower wave
frequencies of about 3 to 4 secs. and the super-harmonic loads discussed
above. In this case, the dynamic response of the structure should be
accounted for in terms of the dynamic inertia forces. The degree of dynamic
response will depend on the frequency content of the exciting force from
random waves and the structural and hydrodynamic damping. Thus, to account
for the dynamic inertial loads, the regular wave static solutions are
corrected by the dynamic amplification factors (DAF) computed by random wave
analysis. Larrabee (1982) provided a method of selection of the dynamic
amplification factor, The method is based on selecting a given probability
level (of exceedance) over a given duration of seastate for both the dynamic
response and static response and then defining DAF as the ratio between the

two,

3.3.2.4 General Linearization Technique

The technique of equivalent linearization for the specific cases outlined
in the earlier section is often used as an approximation method of solution of
nonlinear problems. A general method may be described to approximate the
ronlinear term as a linear one such that the mean square error between the two
terms is a minimum. Thus, for a nonlinear damping term of the form |>'(|°"1 X,

we write

a=1 ¢ _
X = C1 X

| x (3.210)
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Then the form of C, becomes

2 ot 2 -1

¢, = /272 r (52 ) of (3.211)
where oy is the root mean square velocity. In the above expression, C; is not
dimensionless but has a dimension dependent upon the value of o, Note that «
= 2 gives

c.=v8, (3.212)

1 ES ¢ .
For the linear approximation, the drag force becomes
)
folt) =~ ky v 3 ouu(t) (3.213)

In this case, the drag term may be treated as a linear system in constructing
a transfer function and <calculating the response spectrum using the
appropriate equation, e.g. Eq. 3.174,

Roberts (1977, 1978) obtained an approximation to the stationary joint
density function of the displacement and velocity response for oscillators
with nonlinear damping and excitation by white noise. An approximate one-
dimensional (Markov envelope) equation to the resulting Fokker-Planck equation
was obtained. The results were compared with digital simulation, as well as
perturbation and equivalent linearization methods. The stiffness was con-
sidered linear and the damping nonlinear, taking the form

f(x) = x(1 + ¢|x|™) (3.214)
An example of this correlation is shown in Fig. 3.27 in which the quantity
02/002 is plotted versus e* for n = 2, The quantity e* is a non-dimensional
nonlinearity parameter

(3.215)

in which ¢ = nonlinearity parameter, wy = natural frequency, o = standard
deviation of the nonlinear response and og = standard deviation of the linear
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cesponse  (i.e., for e = 0). The figure shows that the equivalent
Vinearization (EL theory) result is very close to the Markov envelope (ME
theory) result over the entire range of e* shown. The digital simulation for
the damping ratio values of ¢5 = 0.05 and 0.50 are also shown. For a low
damping factor, the simulation results are in excellent agreement with the ME
theory. At the higher damping factor, the correlation is less satisfactory,
but still close., The perturbation solution matches others only when ¢* is
small (< 0,05), i.e., for small nonlinear damping compared to the linear term.

3.3.2.5 Nonlinear Response Spectra

The drag force per unit length of a vertical cylinder is given by the
second term of Eq. 2.18. In order to compute the response spectra due to the
drag force, the covariance of both sides of this expression is taken. In this
case, the covariance function of the drag force has a highly nonlinear
relationship with the covariance function of the water particle velocity.

_ k2_4

Rf (T) -

2
D 5 R, (/0] (3.216)

where t = time, oi the variance of the velocity spectrum given by
o, = , S {u) du (3.217)

and R,(t) is the covariance of the velocity, u. Substituting r = Ru(T)/OS’
w(r) is a function defined by the formula

Jr) = [(arl + 2) sin“tr 4 60 (1 - £ 129, (3.213)

.(r) can be expanded in a power series in r as follows:

4r3 EE r7

(Br+ ==t qrtag* ... ) (3.219)

3

w(r) =

The spectral density for f;; is the Fourier transform of the covariance

function. Hence

-lwt

dr (3,220)
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or,

[ RU(T)/ci} e T 4x (3.221)

3 5
w R (1) 4R7 (1) R7(7) .
N o248 1 u u' u -iwt
“u u % (3.222)

This yields *“he following expression for the drag force spectral density in
terme of the velocity spectral dersity.

u u (3.223)

in which the asterisk means convolution, Note that a product in the time
domain appears as a convolution integral in the frequency domain. Thus

. Ay = 1 ! ! KL g " - ' )
Su(u)*Su(m)*Su(u) 2:2 ) ! Su(u )Su(w w") duw Su(m w')dw
' (3.224)

or the triple convolution of Su(w) with itself. The other higher order terms
in the series, Eq. 3.223 may be similarly written.

The discussion in the previous paragraph suggests a reasonable
approximation for SfD, namely, the linearization of u(r) by

o(r) = 8 (3.225)

Then

Se () = L5 (u) (3.226)
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It is found [Borgman (1569)] that the maximum error introduced by the linear
approximation of (r) is of the order of 15%. If the first two nonlinear
terms are introdu.ed, then the error is reduced to about 1%.

+hen current is present along with the waves, the drag force is
rep-esented in terms of the relative velocity. The presence of current alters
the energy density of waves which, in deep water, has been represented by Eq.
2.15, Under tne deep water assumption, an expression for the drag force
spectrum due to relative velocity is shown by Tung and Huang (1972, 1973). To
the rirst ord:r of approximation, the spectrum of the Morison force may be
shown to have the form

Selw) = 16 k5 o Lolv) + 17l e(1)3% Si(w) + ki Sg (w) (3.227)

where recal’ that y is defined as the strength of the current (y = U/cu)
and oﬁ is the variance of the fluid particle velocity spectrum, T.e asterisk
indicates that the spectrum has been modified by current. The rms force
magnitude may be written as

op = (ELFZ] - EZLF]/2 (3.228)
where
- 2 2\ .
ELF) = 2 ky o, [y ¢(x) + (1 + %) o(y)] (3.229)
and
ELF2) = & kﬁ &[4 + K2(yY + 642 + 3)] (3.230)
u
in which the quantity K is defined as
2k003
K = <R—M-—go— (3.231)
In the absence of current (y = U/o, = 0), the expression for E[f2] reduces to
that given by Borgman (1965),
E[F2] = kM2 @ + 3 kB o (3.232)
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Note that the linear combination of the Gaussian inertia force and non-

Gaussian drag force is non-Gaussian.

The parameter, K, is a measure of the relative importance of the drag to
inertia components of the fluid force. It, therefore, serves as an indicator
of the degree of closeness of the force by Morison equation, f(t), to a
Gaussian process. Thus, the larger the value of K, the more important is the
drag force compared to the inertia force, and the more the force deviates from
Gaussian., In the presence of current, a similar conclusion may be drawn with

tne -, replaced by o The effect of current on the non-Gaussian property of

vO
f(t) is more pronounced when current is negative. The expression for the
probability density function of f'(t) = f(t)/c was derived by Tung (1974} and

is given by

o

. 1 1, f .
p(f') =/ 2/K }ﬁ?j;;ﬁ; 1 IO exp | Vi p;rja; s
Y %5./2 Lds + [ exp | - % ' FTi:— - 2 N
) 0 Moo
’ {K 2 ‘ ‘ (

in which Vﬁ = K/, is the current strength parameter already defined, and
s is a dummy variable. Tne probability density function for the force time
nistury in the absence of current may be obtained from the above expression by
setting v = 0 in tq, 3,233, The integrals for the density function cannct be
solved in a rlosed form and are compdted numerically, as is the distribution
functicn, Tris distribution, Eq. 3.233, can be obtained in terms of four

parameters givern as the coefficient of variation, C force parameter, ¥,

I
correlation

e MO

coefficient, | 5 - e and acceleration frequincy, . = . The
SIS ’ .
Uy

Q

rumerical valyes can only be obtained by solving the equation nn 3 computer,
erpression in BEqQ. 3,233 can be written in g rondimensiognal fore
in terms of £ = f/¢, 5 The probability density functign fgr tre linitial

cistrizutior of 't normalizec Ly xy J nas oeen provides t. forgman (1972

a55uming that flt. 3¢ Gaussian, A similar expressior nas ~eer 1yen hy Vine




(1980) for f(t) which includes a non-zero mean velocity, e.g., from current
[similar to Eq. 3.233]. An asymptotic form of the distribution applicable to
large values of the maxima was derived by Vinje (1980) and was found to match

the numerical results of the distribution.

The probability density and distribution function for the force resulting
from a current of U = £3 fps (0.915 m/s) as well as for U = O are plotted in
Figs. 3.28-3.31. It is clear from the figures that the distribution is non-
Gaussian for non-zero current. The effect of the interaction in modifying the
velocity and acceleration spectra is shown to be quite important. For the no-
current case, the Gaussian approximation holds, the difference being only due

to numerical error,

The density function in Eq. 3.233 is an indicator of the non-Gaussian
property of the total force including inertia and drag. However, it does not
provide the information on the extreme force maxima which is the quantity
required for the design of an offshore structure.

3.3.2.6 Statistics of Narrow-Band Morison Force

For the wave force derived from the Morison equation the distribution of
the peak values of the fcrce may be obtained by the method of nonlinear

transformation of random variables in the following ways:

1. If the sea surface 1is assumed to be Gaussian, the force model
becomes non-Gaussian and wide banded. In this case, the
distribution can only be obtained numerically on a computer [Tickell
(1977) 1.

2. If, on the other hand, the force model 1is assumed to be an
approximate narrow-band model for the Gaussian variables, a
distribution function for peak forces may be derived analytically
[Borgman (1972)].

3. If either drag or inertia is disregarded then an analytical

expression may be obtained even for a wide-band model [Tickell
(1977)1].

104




Ny

U=3 FT/SEC.

Uw = 20ML./ HR.
WITH INTERACTIONS

— — — —W/o INTERACTIONS

GAUSSIAN APPROX.

_—X

0
! f13- sec?

FIGURE 3.28 PROBABILITY DENSITY FUNCTION OF FORCE TIME HISTORY f'(t)

[= f(t)/p] FOR CURRENT VALUES OF U

AND HUANG (1972)]

= 0 AND U = 3 FT/SEC [TUNG




,x 10

p(f')

U=-3FT/SEC.
Uw = 20ML./ HR.

WITH INTERACTIONS
— — — — WITHOUT INTERACTIONS

* " GAUSSIAN APPROX.

— X

o
["¢] N
LN
. P, '\\\\
7 AN

~ 7,
/ \
= ~ N\
4/) >
O?——/ , ~
-30 -20 -10 ) 10

' ft3-sec?

FIGURE 3.29  PROBABILITY DENSITY FUNCTION OF FORCE TIME HISTORY f'(t)

[= f(t)/p] FOR A CURRENT VALUE OF U = -3 FT/SEC.
HUANG (1972}]

[TUNG AND




60
/
S0 U=3FT/SEC.
Uw= ZOML./HR. //
40 WITH INTERACTIONS /
— — — — WITHOUT INTERACTIONS ///
30 —_— 7 4

20

—— x — GAUSSIAN APPROX.

~N 10
Q
Q
w
ml 0
Rt
g

-10

-
~ +
-20-//
- 1 1 L ) 1 1 3 1
00l — 6 - 50 90 99 999
P (f")

FIGURE 3,30

PROBABILITY DISTRIBUTION FUNCTION OF FORCE TIME HISTORY, f'(t)

[= f(t)/o] FOR A CURRENT VALUE OF U = 3 FT/SEC. {TUNG AND HUANG
(1972)]

9999




-
U= -3FT/SEC.
Uw = 20 ML./ HR.
'O WITH INTERACTIONS
— — — - WITHOUT INTERACTIONS
orF —"'—‘ GAUSSIAN APPROX.
-'Ob- /
~20p
"30 o
- 40 e /
7/
/
- 50},
-60 A N T P | 1 i B 1 1
00! 1 10 50 90 99 999
P(f")

FIGURE 3,31

PROBABILITY DISTRIBUTION FUNCTION OF FORCE TIME HISTORY f'(t)
(= f(t)/p] FOR A CURRENT VALUE OF U = -3 FT/SEC. [TUNG AND
HUANG (1972)]

9999




Gaussian models for ocean waves involve superposition of numerous linear
waves, For a Gaussian sea, all of the probability properties of the sea
surface may be predicted, In the Gaussian model, the energy density spectrum
completely determines the probabilities of all wave properties especially if
the spectrum is assumed to be narrow banded. A statistical model for the wave
forces faces mathematical complexities if the waves are of appreciable
amplitude <causing nonlinearities to be introduced. Because of this
difficulty, statistical treatments are frequently based on linear theory. If
the Morison force with its nonlinearities is assumed to be narrow banded, then
the probabilities of the extreme values for the force may be derived in a
straight-forward manner,

A simple deterministic model of the short-crested directional sea
condition is

n(x,y,t) =
n

o~ o8

, a cos(knx cos &+ kny sin 6 - wt + wn) (3.234)
where the subscript n represents the nth linear wave, a, is the amplitude of
the nth wave, k,, u, and vy, are its wave number, frequency and phase,
respectively. Assuming that waves are coming from directions covering an area
given by the angle -7 < 6 < =, an integral representation is

« bid

r(x,y,t) = [ [/ alw,8) cos [ kx cos® + ky sing - ut + 9(w,8) | d6 du
0 - (3.235)

0n the assumption that both the amplitude and phase of the component
waves are random with arbitrary probability laws, Borgman (1972) presented a
stationary, second-order stochastic process for predicting the sea surface,
The Gaussian model is a useful, though somewhat restricted model which assumes
that the amplitude is related to the energy content, and phase is independent
and random but uniformly di<tributed over the interval (-=, ). Thus,
dividing the two dimensional plane (w, @), into small cells of width 2. and
LY,
b [ 2 S(f,6) tw AG]l/z cos {kx cost — ky sing - .t~ )

?Ll CiL;S (3.236)

Y!(X’.y st)

105




where w and 6 assume values at the midpoints of the cells. This expression
may be used to derive wave profile from a directional sea given by the energy
density S(f,6) and is thus a generalization of Eqs. 2.11-2.13, Alternatively
o
n{x,y,t) = | [ [2S(f,8) du« de]l/2 cos(kx cose + ky sine - wt + y)
-7 (3.237)
The Gaussian model implicitly assumes symmetry about the still water level,
It fails to encompass the crest-trough inequality. For the latter case, a
general second-order stochastic model with multivariate probability law
similar to those described in Sections 3.2.2 and 3.2.4 is needed for the sea
surface. In the general second-order model, the spectrum is not adequate to
describe the probabilistic properties, It is just one of many characterizing
functions of the wave; bispectrum is another.

A more detailed probabilistic structure can be obtained if the Gaussian
model is restricted to unidirectional waves (6 = 0) and a narrow spectral
density. Then

oo

n(x,t) = | [25(«w) dm]l/z
0

cos {(kx - wt + y) (3.238)

Recall that for a narrow-band model, the Rayleigh probability law applies for
the wave amplitudes, a

1 - exp (-a2/208) ifa>0
P(a) = { (3.239)
0 if a<0

where o5 is the rms value of the wave profile. The corresponding density
function is

a/oO2 exp (-az/Zooz) for a » 0
p(a) = (3.240)
0 for a < O
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The mean-square amplitude, aims is given by
2 _ 2

If 1inear wave theory is applied to the Morison equatinn, then the
inertia and drag force amplitudes are written as

fr = CH (3.242)
and

P
fy = CH (3.243)

where C; and Cp are known functions of Cy, Cp, d, D and T. Assuming these
parameters to be constant, one obtains

p(fy) dfy = p(fy) dfy = p(H) dH (3.244)

The probability density function for the inertia and drag force amplitudes are
then obtained assuming that the wave heights follow Rayleigh distribution

f

26, - (F) 2 .
p(fy) = Tz e I (3.245)
Ir
and
1
L
p(fp) Y r (3.246)
r
where
foo_ 22 (3.247)
Lo= O] Prns
_ 2
fDr B CZHrms (3.248)

The cumulative distributions are written as
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f1 .2
- )
P(f)=1-e Ir (3.249)
f
-F>)
Pf) =1-e Ur (3.250)

Thus, the inertia force peaks follow Rayleigh distribution while the drag
force amplitudes follow exponential distribution.

Similar expressions may be obtained for the inertia and drag force peaks
if the wave heights are assumed to follow two-parameter Wiebull distribution.

The wave force on a one-foot section of a vertical cylinder as a function
of time is written as

f=ky i+ ky Julu (3.251)
where ky = Cy p n02/4 and kp = Cp » D/2. A number of simplifications in the
statistical theory for forces are possible if as before the wave spectrum is
assumed to be quite narrow and concentrated around a single frequency. Using
the linear theory to describe water particle kinematics, the force from Eq.
3.130 may be written equivalently as

2 2 . .
kp Ug €0S™8 + ky wuy sing if |8] < w/2
f= | ., (3.252)
- kp Uy €osT8 * ky wuy sine if 7/2 < |6] < =n

i

where ©

kx - wt and ug = i g?zh kd .

Since the important quantities of interest for extreme value prediction
are the peak forces in the profile, the maximum force is given by

2 (ka)2 ka
ko U~ + if <1
] ak k. u
- D D "0
fo = | O (3.253)
ky & Ug if ?FE’U’ > 1
D0

We note here that for a narrow-band spectrum the wave height, H, is Rayleigh
distributed, Hence, up and GD given by 1linear theory are also Rayleigh
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distributed, Thus, fy in Eq. 3.253 is a linear combination of a first power
and square of a Rayleigh random variable. The probability law of f from that
of H may be obtained by converting the probability of non-exceedance of fjy to
that of H.

-~

Tne cumulative probability of maximum force amplitudes, f, for the
inertia dominated and drag-inertia regions is given by

22 o 2kyf
1-@Xp(--(—:)—2'——) lf—k-—2—7<1
rms MY
P(f) = { (3.254)
4 ??D - ‘f‘I2 | 2k o f
1 -exp { - e } if ;—517 > 1
D 'rms M
The probability density
—TEQ—— exp ( - —7£;—— ) if 0 < —E;E; <1
(f) s (f)rms ky w
p(f) = { (3.255)
s F T, -T,° 2 f
1 ( D 1 - D > 1
‘f‘H2 exp.zx‘r'H2 ) 1k22
D "'rms D 'rms M

where T, = FD/HZ, T - %I/H, and %I and %D are the inertia and drag force
amplitudes. Note that for the inertia dominated case (the upper expression),
a Rayleigh distribution 1is obtained, For the drag-dominated case, the
distribution is exponential.

Any normal stochastic process can be completely described by its mean and
convariance functions, but an appropriate description of a non-normal
stochastic process requires more information. These will yield the mean and
the variance of the offshore structural response. A major shortcoming of this
approach is that it essentially ignores the fact that the structural response
is usually not a normal (Gaussian) process. For example, the knowledge of
response kurtosis allows a substantial improvement over the usual prediction
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for a normal process (with a given variance and power spectral density).
Since kurtosis is a fourth moment property, it is a natural next step beyond
variance,

Hu and Lutes (1987) obtained expressions for computing fourth order
cumulant function for the force which provides the value of the kurtosis of
the response through numerical evaluation. In the frequency domain, the non-

normality may be described by a three-dimensional spectral density function.

3.3.2.7 Statistics of Wide-Band Morison Force

Tickell (1977) derived a general multivariate distribution of wave loads
including the nonlinear drag force from the linear Gaussian long-crested
random seas. Probability distributions of the peak loads were developed.
These distributions showed the general behavior of a wide-band process in
contrast to simpler distributions which resulted from the narrow-band
assumptions, The probability density function of force time history, F(t), is
written in an integral form as follows:

2 2
o i N S U ,
PR =g | e L -g (v ) 1y (3.256)
vy o by %

and computed numerically. The quantities y; and v, are defined as
¥y = F‘D u (3.257)
by = ky U (3.258)

and their standard deviations are computed from the second and fourth moments

of F as
EFly = o2+ 3 oF (3.259)
Y 1
2 1
4 4 2 4 8
P4 = .2
EFY 30¢2 + 18 % %t 105 %, (3.260)
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This basic force distribution theory has been compared with data obtained
from an offshore platform in the Southern North Sea. The cumulative distribu-
tion function of the vertical bending stress in a bracing member of the
platform is shown in Fig. 3.32 along with the Gaussian CDF, A measured
kurtosis (= E[F4]/E2[F2]) of 6.9 indicates a strong deviation from the
Gaussian distribution as demonstrated in the figqure. For a mean zero Gaussian
distribution the corresponding kurtosis is 3.0.

While this formulation indicates the importance of the non-Gaussian
formulation for the nonlinear loads, it is not useful in the practical design
where the distribution of the peak forces is needed. The cumulative peak
distribution may be estimated from the expected number of peaks above a
certain force level. However, it 1involves higher moments of the spectrum
(e.g. sixth moment of the velocity spectrum) which are inaccurate because
representation of the tail of the wave spectrum (e.g. P-M spectrum) is often
inaccurate. If the time history of the force is assumed to be a narrow-band
process, the distribution requires the fourth moment of the velocity
spectrum, If, in addition, the force and its first time derivative are
assumed tc be independent, then the distribution may be obtained from the
second and fourth derivatives of force only. This results in a narrow-band
non-Gaussian force amplitude distribution, The theoretical and observed
distribution of the stress range of the prototype data discussed earlier and
the tip displacement range from a laboratory test on a vertical cantilever
under random wave input are shown in Figs. 3.33 and 3.34., The ranges are
defined as the highest peak to the lowest trough between sSuccessive zero
crossings in a record. The Rayleigh distribution is also shown in the
figures. In each case, an improved estimate of the range is achieved by use
of the non-Gaussian distribution,

For a narrow-band model, the probability distribution of the peak
force, f, which is normalized by the standard deviation of force is given by

(%-K2 + 1) f exp L - %-(% K2 + 1) 2 ;
for f < K'l(% K2 + 1)'1/2
p(f) =
B2V e -G Y2k F e L]
for f > K (% k2 + 1)"1/2 (3.261)
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. f
where f =-Jl, f0 = peak force, of = standard deviation of force, and K is

f

defined as the drag-inertia parameter. The drag-inertia parameter is the

ratio of the drag force amplitude to the inertia force amplitude given by

2
4 C, o 2k~ o
K=—pD U . _DU (3.262)
nCMDwZ Koo
M
where Of T W0 Wy = Zero upcrossing frequency of the water particle

veioticv. aad g, = correspinding standaid ucviation,

If the inertia force predominates, then K » 0 and from Eq. 3.261

p(F) = f exp ( --% £ ) (3.263)
which is the Rayleigh distribution describing the probability distribution of

a narrow band process. On the other hand when drag forces dominate, K + = and
Eq. 3.261 reduces to

.2 V3 v 3 2
p\f) = Texp ( - —2—' f ) (3.264)
which is the equation of an exponential distribution. The cumulative

-~

probability distribution of peak forces is obtained by integration of p(f).
The probability of non-exceedance of the normalized peak forces for different
values of K, namely K = 0, K » =« and K = 0.5 has been plotted in Fig. 3.35.

For a wide-band model, the peak distribution of force, f, is expressed in
terms of the joint probability density of force and its first and second
derivatives (obtained by differentiating Morison equation)

0

J F, (f, f=0, 7) df df

o

(3.265)

Fp (f, £=0, f) df

8Q\C}|gﬁ

First, a multivariate Gaussian distribution for the velocity and its
derivatives is constructed. Then, it is transformed into the force variable
and its derivative to form p(f, t, ?) using the Morison equation [Tickell
(1977)]. A simple closed form expression for the general force case does not
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seem possible, The individual probability densities for drag-dominated and
inertia-dominated limits are obtained respectively as

p(fy) = (1 - &)1/2 133-T%T exp [ - 52 | ]
43 1 -6 \1/2 f
erf [ - (= =172
v 2 £ | f]
2 \1/2 43 € Y3 2
C (RIS e [ - S5 1] ] (3.266)
| ] 2¢
where ¢ = spectral width parameter for the water particle velocity, and
erf = error function,
s 1 2,1/2 ; £2
p(f) =5 (1= )% fexp [ -]
2 - £2
1 - e 4172 ] (3.267)

where € = spectral width parameter for the water particle acceleration, The
last relationship is the Rice's distribution,

In the above expression, if ¢ » 0, then the expressions for the wide band
peak distributions for both drag- and inertia-dominated areas reduce to the
corresponding narrow-band solutions (Eqs. 3.263-3.264). The results from the
wide-band model (for a value of e = 0,7) for K = 0 (inertia dominated,
Eqg. 3.267) and K =+ « (drag-dominated region, Eq. 3.266) are plotted in
Fig. 3.35.

It may be observed that the effect of nonlinear drag forces is most
pronounced in the upper tails of the distribution function. Thus, the
probability of exceedance of large peaks increases with increasing value of
the drag-inertia parameter, K. Moreover, at least for K = 0 and K » «, the
narrow band model yields results that are close to and higher than the wide-
band model. These results suggest that these models may be conservatively
used in predicting extreme responses.

If the spectral width parameter is nonzero (e > 0), the prediction of the
extreme value is expected to be different from the case of ¢ = 0. It can be
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shown that for the inertia dominated region, the limiting relative magnitude
is given by (4 1In N)‘] In{1l - 52) whereas the drag-dominated limit can be
written as (2 In N)'1 Tn(1 - 52). Therefore, if the number of force peaks, N,
is large, the deviation is small., For example, if we choose N = 1000 and
e = 0.7, the reduction in the expected extreme values is 2.4% for the inertia-

dominated case and 4.9% for the drag-dominated regions,

A slightly different approach in the extreme value analysis was adopted
by Moe (1979). Instead of expressing the probability density of force maxima,
Moe derived expressions for the expected rate of occurrence of force maxima at
any intensity on a cylindrical member of a structure. The expected number of
peaks per unit time exceeding a prescribed value of the force maxima can be
found from these expressions by integration. On the assumption that the sea
surface is not necessarily a Gaussian process but a non-narrow-band stochastic
process, the expressions are obtained for the inertia and drag force as well
as for the Morison formula. The expected number of extrem2s per unit time per
unit increment of the loading level, f, is given in terms of the extreme rate
density, u(f).

Knowing u(f), other statistical quantities may be readily computed. The
probability density function for extremes is given a3

o(f) = w“(f) - (3.260)
o u(f) df
The probability of f > fy (a defined value) is
. ffo u(f) df
= w(f) df

The expected extreme value is

. jg f u(f) df
E(f) = — (3.270)
Jfo U<f) df

For the purpose of these derivations, several definitions for the
frequencies are required. These are the expected frequencies of the wave
profile, its derivative, the particle velocity, the particle acceleration and
its derivative., They are defined as follows:
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w1 Ou/orn; wy = oa/cu; wy = og/ca

wi oh/on; wé o'r;/oh (3.271)

in which r is the decay factor depending on the water depth and rn(t) refers

to the decayed vertical amplitude of the water particle orbit. In deepwater
2: Y= Jo=

(w kg), we have Wy =y and wy = w,.

Note that by Airy theory,

_cosh k
r = mﬂ% (3.272)

5, () = re 2 s () (3.273)
Sa(w) = r2 w4 Sn(d> (3.274)

The peak rate density of the wave height for a sea surface of any
bandwidth. (0 < ¢ < 1) is given by

R wé . };2
u(H) = [ exp ( - > )
4 /‘ﬁa /o 8 ¢ my
e (1 Y2 e (- He
2 /gy gm,
2
{1-«»[-%(%@)“%}1 (3.275)

)2

where =1 - mg/(mO m4) =1 - (wi/wé and o(x) is the cumulative distri-

bution function for a Gaussian variable.

The short-term rate density for the inertia force maxima is given by

~o¥3 0 f £2
u(f) = 'Z;-k—?—-*z' exp ( - E"'kj——‘g ) (3.276)
M “a M %

Note that for a narrow-band process T wi and the above expression
corresponds to a Rayleigh distribution. The short-term rate density for the
integrated total inertia force on a cylinder has tne same form a5 [Ge. 3.276 if
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KM2 oa2 is replaced by the corresponding integral representation for the total

force,

The rate density for the short-term drag force was derived by Moe (1979)
for the deepwater case assuming relatively narrow-banded waves. In this case
the total drag force on the pile may be approximated by

Fp(t) = 0.5 kg g[n(t)[n(t) (3.277)

and the rate densitv of the drag force maxima has the form

. ‘
- U Y1 ( D
#(Fp) = 75 g0z &P L - 3R, o7 (3.278)

When the wave amplitude is such that both inertia and drag components are
important in the Morison formula then both terms are needed. This criterion

is established from the parameter

ﬂozz—rq?—:-z'r—r-g (3.279)

Note that nrg has a unit of lergth as opposed to K in Eq. 3.262 which is a
dimensionless parameter. Thus, rg may be thought of as a measure of wave
ampiitude which determines the importance of the drag force compared to the
inertia force. For small values of n < ng, inertia is predominant while drag
becomes significant for large values of n > ng. Once the expected rate
density of force maxima for & given amplitude is known, the expected number of
peaks for this limiting value of force may be determined by integration of the
density function. For a point at the surface, we have r =1 and ny = 1.5D to
3.0D, depending on the cylinder roughness. For ; > My (which means both terms

are important in the Morison formula)

R ( f-f/2
|l PR —— - - \
uif) = = ?_F;EE exp ! E*QE-EE— )s f>f, (3.280)
and
“g kM2
T - (3.281)
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EXAMPLE
Consider an ITTC wave spectrum model

2
S(w) = Heexp (- =) (3.282)

"]

in which a = 0.0081 and B = 3,11/H.%. Since higher order moments of the
spectra are required in considering a distribution of peak forces, and since
the higher order moments of this type of spectra are divergent, an upper cut-
off frequency must be specified in these cases. A cut-off frequency of
weyt = 1.257 (period = 5 sec.) was chosen to limit o,. Then

o, = 3.75m, o, = 1.69 m/sec. and o, = 0.943 m/sec?

u
Assuming the pile diameter D = 1lm, pg = 1026 kg/m3, Cp = 1, and Cy = 1.5, we
have kp = 513 and ky = 1209, wp = 0.4507 rad/sec and wo = 0.5580 rad/sec, The
force, fg, is obtained as fy = 444 N/m. Then from Eq. 3.280 the force at the
surface per unit length has the rate density

5y . 0.0888 | f - 222,

SRR A ¥ (7 AT et I (3.283)
and the drag force has the rate density (Eq. 3.278)
(Fy = Q0737 o Fo | (3.284)
“\p) = Fo770 °XP 70770 .

thus the number of peaks in the surface process is 0.0717/sc¢c and in the
velocity process 0.0848/sec. The expected number of peaks per unit time
exceeding a given Timiting value of f and FD is found by integration,

M(f') = 0,0786 e~f /2930 (3.285)
M(Fp') = 0.0717 e~Fp'/70770 (3.286)
For axample, about 37% (e'l) of the peaks will exceed 2930 N/m (at the

surface) and 70770N (total drag force), respectively. These functions are
shown graphically in Fig. 3.36.
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3.3.2.8 Statistics of Wave-Current Force

When current is added to the waves, the velocity is given by the relative
velocity between the two and the force has a non-zero mean. The extreme value
analysis for this case may be obtained by the above analysis if further
simplifying assumptions are made. Moe and Crandall (1978) derived the extreme
statistics of the wave-current force based on the extreme rate density, u(f).

3,3.2.8.1 Narrow-Band Gaussian Wave and Small Current

The assumption of narrow bandedness implies that wy, wp, etc. (Eq. 3.271)
are nearly equal, The amplitude or envelope n(t) of a narrow-band Gaussian
process is distributed according to the Rayleigh distribution

~
~ -~

o0 = g exp i - /20 % ) (3.287)

T I

In the presence of a small steady current, U

u=U+nrou

| cos [kx - bt + w(t)]) (3.268)

a=;ru1'2

sin [kx - bt * v(t)] (3.289)

~

where n1(t) and ¢(t) are slowly varying. Then

p(f) df = p(n) dn (3.290)
and
. -2
f « f -
;—§—f§——§ exp { - E;T7T_?-—7'} , 0 < f<f,
M1 % M %1 %
f) = . .
PV =) e (- OF - rpr2 - atkg 08 - e Yl g D) ),
5 = 177 , > f0
2 ky o, [1+ (ky U /Lf - fo]) ]
(3.291)
where
u,i ka
o T 7% (3.292)
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correct to the first order in U/°u° For U =20

p(f) = . £ty (3.293)

which is the same as that given by Borgman (1972). Also, note the similarity
between Eqs. 3.293 and 3.280.

Now consider surface elevation, n(t) not necessarily a narrow-band
process. Asymptotic estimates of extreme force statistics may be obtained in
this case, If the joint probability density function for the force f(t) per
unit length on a cylinder and its time derivative, f 1s p(f, f ), the peak
rate density is given by

w(f) = - [ 5% f:f (f,#) df |
=1 (3.294)

The asymptotic approximation of p(f, f ) is

pIf, ) = e exp {- —2— [f-F/2 - 20 (kyF)V/2 + #2/(4udf) 1)

0 2kpoy (3.295)
w22 fI2 -
where f, ='——§?E——. The peak rate density u(f) is
., exp (- [f - £4/2 - 2u(kD?)1/2] /(2k%5 )}
_ u
u(f) = 5 (3.296)

D oq2[1+ (k U /f)l/z]

Comparing the two expressions in Eqs. 3.291 and 3.296, the former is

2k

valid for any f > O but is restricted to narrow-band waves. The latter has no
band width restriction but is only valid for large f asymptotically. Both
results are restricted to small currents, i.e, U/ou <1, When U = 0, the only
difference is wp vS. wy. Tnis suygests that the frequency of larger extremes
is determined by the frequency w, of the velocity, u(t), process rather than
by the frequency, w of the surface elevation, n(t), process.
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EXAMPLE

Let us investigate the large-force behavior of p(%) for a cylindrical
pile 1.3m (4.3 ft.) in diameter for a P-M spectrum seastate for wind speed of
30 m/s (67.1 mph) in the absence of current., The spectrum is truncated at a
frequency of 0.98 rad/s. The result is calculated at a section where
oy = 1.8 m/s (5.9 ft/s), oy =0.90 m/s? (3.0 ft/s?), f, = 68 kof/m
(4.6 1b/ft), and ZfDoUZ = 450 kgf/m (310 1b/ft), The extreme rate density is
shown in Fig. 3.37 from Eq. 3.296 by setting U = 0., The peak rate density,

u(f), has an exponential decay here.

Grigoriu (1984) considered the extremes of the modified Morison force in
the presence of current by two different methods. In the first case the
extremes were predicted based on the assumption of Gaussian force through
linearization, The corresponding Gaussian approximatior. for the drag force

will have the form

2
p(Fp) = 1ﬂ FNT 0 (F)) Jexp { - —p - N o2 | (3.297)

in which N is the number of peaks defined as N = 2nTp/uy where wy is defined
in Eq. 3.271 and Ty is the duration of the storm under consideration. In the
second case the actual distribution of force was considered. Expressions for
extreme value density functions were obtained for the drag force alone and for
the drag-inertia force combination from the Morison formula. The probability
density function of the peak drag force (in the presence of current) is given
in terms of the nondimensional force

f

3 D~ “fD
fo=—— (3.298)
D o
D
where fn = peak drag force amplitudes, wug = mean value of the peak drag force
and og = corresponding standard deviation, The dependence of current is

introduced in the expression of the density function in terms of o which is

the inverse of y. Thus, « can be defined as:

[

OU
N (3.299)
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where U = current velocity. Thus, o« » 0 when U is dominant (v » «) and « » «
as current approaches zero. (y - 0). The probability densities for the exact
and approximate expressions were used to determine the mean and standard
deviations of the peak drag force by numerical integrations. Thco mean and
standard deviation of the peak drag forces from the exact and approximate
methods are normalized by U and shown in Fig. 3.38 versus N for o = 0,5, The
figure shows that the Gaussian hypothesis yields approximations which
significantly underestimate the mean and standard deviations of the peak drag
force. For example, these values from the exact formula are 10,4 U2 and 0.86
U2, respectively, while the corresponding values from the approximate formula
are 6.0 U2 and 0.26 U2 for N = 10,000 and « = 0,5.

3.3.2.8.2 Finite Current

naess (1983) developed a general method of investigating extreme values
of a compound stochastic process. The method relies upon the mean upcrossing
frequency, f:(f) at a level ¢ of a process, e.g., force, f(t). 1In the extreme
situations tﬁese upcrossings are rare events. Such upcrossings are assumed to
be statistically independent which is at least conservative,. The zero

crossing frequency i1s derived in the following way.

By the Poisson probability law, the probability that f(¢) stays below a
tevel 7 during a time interval of length, T,, is given by

PLF(E) < £] = exp {- F (F)Tp} (3.300)

R
Thus, if f: is known for all large values of £ the probability distribution

function of max {f(t)} is known.

The general procedure of obtaining the zero upcrossing frequency, f;(f)
is applied to the forcing function computed by the Morison formula, jThe
problem is to obtain the upcrossing frequency of the forcing function, f(t).
The fluid velocity, u(t), is assumed to he a stationary Gaussian process and
is differentiable. The quantities wu(t) and u(t) are independent random
variables, In the presence of a current U, the mean value of u(t), is given
by Elu(t)])

1]

. Normalizing the velocity and acceleration terms as

[npt'}

t) and T(t) -

L'I(t> - <o o]
u u

ol
9]

(3.301)
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and the forcing function f(t) by

f(t) = T (3.302)

Eq. 3.251 is written in a nondimensional form as

T(t) = h[a(t), T(t)]

G(t) + 5 K|T(t)[T(t) (3.303)

The variables, u(t) and u(t) are two stationary Gaussian processes of unit

variance

ELd, (1)) = 0 (3.304)
and

ECT(t)] = =2 = v, Yy >0 (3.305)

u

Y= £1(f) of f(t) is determined by the

The mean upcrossing frequency fg £

well-known formula of Rice,

Using the law of marginal distribution and transformation of variables,
the probability density of mean upcrossing frequency may be written as an
integral of the product of conditional probability density function between

¢ and U and the probability density function, pf. The expression for fE is

-3 oo . . — ~

+ ¢d ¢ 1 - u N2 1, ~ 2 -
fo=1/ | exp {- 5 (=L )} exp {- 5 [0+ (u - )]} du
¢ el TS (== Vlepi-z }
(3.306)
where
=BG =, T = 0] = up(i - 1)+ Keyluld (3.307)
and
2
- e v e - wa 2
o= Var[Flu = u, u =u] = ~ (1 -90) (3.308)
P
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N

g
where Wy = GG/Ou’ and the correlation coefficent, p = el Alternately,
U u
I SR 472 L Y S,
fez o= [ | e 2 tue (=) Jexp {-=»Lu+ (u-+)1}du
e 2 “ (3.309)
where
L e
u==g&- 7-K{ulu (3.310)

This equation for the zero upcrossing frequency can be solved numerically. An
+

asymptotic relation for fg

(1980)

valid for all current speeds is obtained by Vinje

T ] T
fg = =5 exp { - §-+ 2U (-% -5 ) - <t } (3.311)
K 2K
Note that Borgman considered the case of U = 0 while Moe and Crandall (1977)
investigated the case of y <1,

For a long time interval (i.e., large &), the probability distribution
function of the largest value of f(t) is obtained assuming a time interval
tength, Tp and defining

T=nb max (F(t)) (3.312)
as
P=(n) = Prob {f < n}

Prob {max[f(t) < un}

4

+
exp { °funTR} (3.313)
The expected value of the maximum force is obtained from

Elmax (F(t)}] )2

1]

KE[F] = 2k [ 6,(T,)" + U ©

0''R 1

+0[(en 0 TR)'3/2 ] (3.314)
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where G = Euler's constant (= 0,5772),
w 2
_ 2 U 1
Q—Hexp{-—2-+-é—;2-} (3-315)
and
2 2n q1/2
e (Tg) = [ (n+1) an 6Ty +U° - Eﬁ-] /2, n=0,1  (3.316)

Note that as Tp » « the variance of the maximum values of f(t) approach
n2K2/6.

It may be similarly derived that the component of the drag force has the
expected extreme values given by

T

Wo T @
E[ max {fD(t)}] = u[{22n —%;&)1/2 + U]z + 2K6 {1 + U(22n i R)-1/2]
w,T
+0 [(an g%—g)-3/2} (3.317)

which has the same asymptotic variance as the total force.

EXAMPLE: Consider a pile of diameter D = 1lm and a seastate given by the
significant height, Hy = 6m and zero upcrossing period T, = 8 sec,
Assume Cy/Cp = 1 and U = 1,

For this case, o, = 1,21 m/sec and oy = 1.70m/sec2. Then

u
o -1
wy = — = 1.4 sec
g
u
and
2
2k~ o
K=ot = 1.1
M*u

+

£
in Fig. 3.39 along with the upcrossing frequencies fZ(fD) of the drag f~rre

The mean upcrossing frequencies f, are plotted versus the load level, £

component., The expected largest values of the total force, f(t) and drag

force, fp(t) are shown as functions of time interval, Tp, in Fig., 3.40, The
expected values of the inertia force, fI(t) is a Gaussian process. Since
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loading is high and mainly in the drag regime, the extreme value analysis can
be performed on the drag force component alone with reasonable results, On
the other hand, a term by term extreme value analysis of the Morison equation
(centerline, Fig, 3.40) substantially overpredicts the expected value.

3.3.2.9 Statistics of Nonlinearly Damped Systems

If the excitation for a single or multi-degree of freedom system is
assumed Gaussian and the damping in the system is linear, the prediction of
extreme values of the response of the system is straightforward by computing
the response spectra first., This has already been demonstrated. However, if
the damping is nonlinear, then the prediction formula is difficult to obtain
in general. The problem of the response of a nonlinearly damped system
subject to a Gaussian excitation has been addressed by Brouwers (1982) and
approximate expressions for the probability distributions for small damping
have been derived.

The derivation is based on the fact that if damping is small in a system,
the response near resonance is finite (unlike an undamped system) but still
extremely large compared to the response away from the resonance. This is, of
course, true if the natural frequency falls near the center of the excitation
spectrum, For a natural frequency far in the tails of the excitation spectrum
where there is very little energy the response will be small even if the
damping is small., The overall solution in the former case is dominated by the

response near resonance,

Therefore, for small damping the response is narrow banded (but non-
Gaussian for nonlinear damping) over a small band of frequencies. The
excitation spectrum over this band may be considered constant. An example of
this scenario is shown in Fig. 3.41. The frequency, wy corresponds to the
natural frequency of the system and the relative magnitudes of the width and
height of the response spectrum is indicated in the figure. In this case, the
input spectrum may be treated as a white noise for which solutions have been
obtained by Roberts (1977). Because of the narrow bandedness of the solution,
it may be represented by a sinusoidal wave of slowly and randomly varying
amplitude and phase. An exact solution for the joint probability density of
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the amplitude and phase has been obtained by Roberts (1977). Brouwers (1982)
provided an alternate method of solution for these density functions for
amplitude and phase in integral form.

The equation of motion of a single degree of freedom system involving
nonlinear damping is written as

mx + g(x) + mw%x = f(t) (3.318)

where m = mass of the system, ug = undamped natural frequency, x = displace-
ment response, g(x) = damping force as an odd function of x, and f(t) = sta-
tionary Gaussian excitation with zero-mean, If the damping term is assumed to
have the form

ila’l

g(x) = N X (3.319)

then a simplified expression for the integral representation of the
probability density function may be obtained. Nete that for a = 0, Coulomb
friction is represented, If « = 1, the damping is linear viscous while if
n = 2, it is the usual fluid dynamic drag. The probability density for the
response maxima (amplitude a) is

ro 4 y I 4 2 ar 1
R = L A R
ple) = 7 7 | J
¢ U T3 T 20, P lgwT )
(3.320)

where I is the gamma function tahbulated in mathematical handbooks. For a = 2,
the expression for p reduces to that for a Rayleigh distribution. The

variance of the response may be computed from

\ 4 3/2 ] \ a+ 3 . 2
2 r T+ 1 m ((1. + 1) S((L,O) T ( 5 T 1
o = | (3.321)
IS S gy soN T L2
0 " a+l 2 /
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The probability density function is plotted in Fig, 3.42 for o = 0, 1 and 2.

The expected extreme response may be obtained from the probability
density of the largest amplitude

(o ) - &) (3.322)
P 9max l da a3 =3 *
max
by an asymptotic approximation,
2 1 a
ar ! ) -
B [ a + 1 1/2 a+ 1 a -1 + 1
Ffamax)—oa‘r{ 1 \.} {1+-&———1-K2nr<}
a+ 1/
.- 1 G- 4anT{ - E i )
1+a—+TK5LnK+( o )K
(o - 1) 2 2
= .<2n.<+0(»<)] (3.323)
(a + 1)
where G is Euler's constant {= 0,57722) and
B 3,324
TN (3.324)

The expected extreme values of the response for different values of o and
large N (= 1000 and 2000) are tabulated in Table 3.5, The extreme value is
seen to decrease as « increases,

If an equivalent Jinearization technique as shown in Section 3,3.2.4 1is
employed then the mean square displacement has the form

3/2 2
2 1 o St ST

. — | (3.325)
T2 2 S N

The ratio of the mean square displacement between the general solution and
linear approximation has the form
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TABLE 3.5

RATIO OF THE EXPECTED EXTREME RESPONSE OF NONLINEAR
AND LINEARIZED SYSTEM TO THE ROOT MEAN SQUARE RESPONSE
VS. THE NONLINEARITY PARAMETER o
[BROUWERS (1982)]

N 0 1 2 3 4
1000 5.60  3.87  3.26 2,95  2.76
Efal/o
2000 6.056  4.05  3.37 3,02  3.83
Oeq/o 0.8 1.0 0.96  0.89 0,82
1000 0.64 1.0 .16 1.24 1,27
E[aeq/Em
2000 0.62 1.0 118 1.27  1.30

2.63

2,68

0.75

1.28

1.31




o ( )
eq _ a+ 1 { 2 pot 1 (3.326)
o (e51) Gr)r (s

These values for a =0, 1, ... 5 are shown in Table 3.5. In all cases (except
a = 1, linear case), the equivalent linearization method underpredicts the
mean square value which increases with increasing nronlinearity, i,e.,

increasing a.

For an equivalent linear representation of the damping force which is
considered small, the probability density of maxima reduces to a Rayleigh

distribution whose extreme value formuia is known as

fla ] =V 2 %%

-1/2 1 2
maxJeq n N {1 +zyan N+ 0 (anN) } (3.327)

a
A comparison for the expected extreme values between this solution and the
general solution is shown in Table 3.5, The linearized solution overpredicts
the extreme response in all cases (except for a < 1), Thus, this simplified
method may be applied as a conservative method in this case,.

An example problem was provided by Brouwers (1982)., For certain types of
offshore structures the response is governed by resonance. (If the response
at resonance is not important, on the other hand, the nonlinear damring term
is of no consequence in the analysis.) The riser of a Single Anchor Leg
Storage (SALS) system for oil production (Fig. 3.43) may fall in this cate-
gory. Consider a 4m diameter riser in 140m water depth. The riser responds
predominantly in the first mode at a natural frequency of 1.4 rad/sec. which
is well in the center of typical wave spectra. The second natural frequency
of 5.5 rad/sec is outside the range of energy spectra. Assuming a small
damping, Brouwers (1982) obtained the distribution for extreme amplitudes by
the present approximate method as well as by numerical time domain solution,
The results for o = 0, (Coulomb friction) and 2 (quadratic damping) are shown
in Fig. 3.44, Note that the approximate solutions in both cases are quite
satisfactory.

Roberts (1987) considered a class of nonlinear motion response problems
which have a linear-plus-quadratic damping and linear-plus-cubic stiffness,

with a softening spring characteristic, Thus, the problem involved a second-
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order equation of motion of a moored floating system having drag-type damping
and hawser lines. A generalized method of stochastic averaging was applied to
deduce expressions for various response statistics. A modification of the
Markov process allowed use of a non-white spectrum shape. The excitation was
assumed to be a stationary process with zero mean.

The cumulative distribution based on this modified theory is compared in
Fig. 3.45 with the experimental data on roll peak amplitudes of a ship model
in a random beam sea. The results from the previous theory [Roberts (1982)]
are also shown on the figure, The modified theory seems to match the
experimental data well.

3.3.2.10 Statistics of Drift Force Response

In order to predict the maximum values of the slow drift responses of a
moored vessel, the statistical distribution of the slow drift response must be
known., In this case, the exciting forces are non-Gaussian., In addition, the
mooring sSystem generally has nonlinear restoring properties, but that
nonlinearity has not been discussed in this section,

For an infinitely narrow-banded wave spectrum, the slow drift response
follows an exponential distribution [Stansberg (1983)]. However, for a wave
force spectrum of finite bandwidth, the statistical distribution of the
second-order wave force differs from an exponential distribution [Langley
(1984)].

The second-order force may be expressed in regular waves in terms of a
reflection coefficient

(3.328)

Thus, the force is proportional to the square of the wave amplitude, and the
reflection coefficient, C(w), is a function of the wave frequency, w. A

random sea is written as a superposition of linear wave components

n(t) =

) (an cosw t + bn sinwnt) (3.329)

o~ 2

1

This process may be equivalently written in terms of a single wave component

with time varying amplitude and frequency
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n(t) = a(t) cos [uwt + 6(t)] (3.330)
where
a(t) = (A2 + g2)1/2 (3.331)
o(t) = tan~! (B/A) (3.332)
N — —

A= I {a cos (wn - w)t + b, sin(mn - w)t} (3.333)

n=1

N
B= 1 {a,sin(u - W)t + b,, cos(u, - W)t} (3.334)

n=1

and @ is a central frequency, e.g., the mean frequency of the spectrum. The
time varying amplitude, a(t) is known as the envelope of n(t). The time
varying frequency is given as w + 6 where dot represents derivation and 6 is
variation about the mean frequency. With this definition, then, the second
order force due to a random sea may be approximately written as

Fo(t) = ¢(@ + ) [a(t)1? (3.335)

The joint probability density function, p(a, 8) may be written as

2 2
. 1 2 8
pla,8) = —2p—exp (-3 [ (Zp+—5) 1]} (3.33)
‘N(Jn Ou On Ou
where o is the rms surface elevation and ¢, = q Op 3 O is the rms surface

velocity and q is a measure ot the spectral width given in terms of the
moments of the spectrum

m
@ =1-—

(3.337)
MoM2

Thus, q + 0 represents a narrow banded spectrum,

The joint densi.y function, p(FZ,é) may be obtained by transforming from
(ayé) to (FZoé)

z -3 1 i
- exp { -
/B 0% o, [C(a+ 817 z

P(F,.0) =
(3.338)
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The density function of the second-order force F, can be found by integrating
p(F5,8) over 6. Nondimensionalizing F, and & as

) o
7, -2, 52 (3.339)
on quw

where w is chosen such that w = wi s

olo
3 |

T

p(F) = Yo | (012 exp { -3 [ —2(1+3%) ] }ab  (3.340)
-~ ¢,(8)
where
¢ (8) = C(u] + qu}?) (3.381)

In the limiting case of g = 0, the expression may be integrated analytically

F
1 1 2
p(F,) = exp { - | 1} (3.342)
2 ZClwl'i 7 Clwi,
which is the exponential distribution.

The probability density function of 8 is given by integration over the
envelope, and

22

. 8- 1=3/2
p(8) = g 2y + — )7 (3.343)
20 “a o o
.nou n u
Letting r = %r » the probability density function of the modulus of r is
1

obtained as
Ir| 2 . 2,-1/2
P(|r]) = 2 jo p(r)dr = |r] [r° + q°] (3.344)
For q = 0.3 (a typical North Sea wave spectrum bandwidth), 8 will exceed

0.4wi 20% of the time for which the exponential form for narrow band spectrum
will be inaccurate.
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The probability density function of ?é is shown for w; = 0.38 and g = 0
to 0.5 in Fig. 3.46. This illustration shows that even for a slightly wide
band spectrum, the second order slow drift force may not follow exponential
distribution, Note that the distribution described here refers to the
marginal probability density function of the process (force time history)
which does not say anything about the distribution of the force maxima,

3.3.2.11 Statistics of Low Frequency Motion

Pinkster and Wichers (1987) examined the statistical properties of the
stow-drift motions of floating moored structures through time-domain
simulation as well as from mnodel tests. They derived the expression of
optimum duration of simulation so that the convergence in the statistical
properties is achieved. They assumed a band width limited white noise
spectrum for the drift force with an exponential distribution. Then the surge
drift motions become normally distributed about its mean value,

It was shown using experimental data that as long as linear mooring
systems are used, the assumption of normal distribution of the surge motion is
quite valid. The troughs and peaks likewise follow Rayleigh distribution, On
the other hand, for a nonlinearly moored system, the deviation of the surge
motion distribution from the normal distribution is significant (Fig. 3.47).
Likewise, the amplitudes of motion do not follow Rayleigh.

It was also found that the duration has a significant effect on the
statistical properties of the slow drift motion, Longer duration reduced
statistical variance. Typical length of 18-20 cycles of surge period
oscillation may not be enough to achieve stability, About 5 times this
duration (i.e., 90-100 cycles) are needed for a small variance in the
statistical results.,

It is clear from Eqs. 2.89 and 2.84 for forces and motions, that they may
be written in a general matrix form as

x(t) = u Hu* (3.345)
where H is the Tatr1ﬁn%1ven by the tensor notations ﬂﬁn or Gmn , u is the
vector given by u e and u* is its conjugate. The matria, ¥ is complex

m
Hermitian,
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H* = HI (3.346)
so that a diagonal matrix A may be obtained where
H = RTAR* (3.347)

The properites of R and A are as follows:
(1) & contains the eigenvalues of H which are real.

(2) The rows of R* contain the eigen vectors of H.

(3) RIR* = I

(4) The eigenvalues Aj, and eigen vectors, Vis satisfy the relationship
V.U H = L vt (5.348)
J J J

Substituting these relationships in Eq. 3.345, the second-order quantity,

x(t), becomes
2 (3.349)
where the vecior X has the form

X = Ru (3.350)
Since u is a complex Gaussian random variable and X is a linear combination of
the components of u, X is also a complex Gaussian random variable at a given
time and from Eq. 2.76.

~ 2 * . .

ECIX.19) = 1; ECX, x.] =0; E[X, X, ] =0, i# 3] (3.351)
J T LN

Then, writing

2 (3.352)

the second-order quantity x(t) is a sum of independent random variables, Zj
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The following is according to Naess (1986) and Langley (1987). The real
and imaginary parts of Aj
having a mean squared value of 1/2 (Eq. 3.35). Under these conditions, it can
be shown that lxj] has a Rayleigh distribution [see Stansberg (1983)].

Simitarly, |Xj|2 has an exponential distribution with a mean value of unity.

are independent Gaussian random variables each

Then the probability density function is given by
S T
z.) = e 3.353
p( J) T'T—r ( )

This equation is valid for positive Z; if Aj > 0 and negative z; if Aj < 0.

The characteristic function, Mj(e) of z; is defined as the expected value of

. J
ol GZJ

(=]

a 1024 _ i0z. _ o -1
Mj(e) =E[e “j]1=] e % p(zj) dzj (1 1Aj8) (3.354)

-

From this and the relationship in Eq. 3.352, the characteristic function of x
is given by

M(o) = € (M= g (1 - ixe) (3.355)
The probability density function of x, p(x) is a Fourier transform of M(6),
-1 6x

p(x) = VI J e M(6) do (3.356)

Substituting the value of M(8), the integral 1is evaluated by contour
integration [Naess (1986)]

M . =X
T S e /A x >0
=1 !
p(x) = | N
A (3.357)
L e AL x <0 3.357
el U !
where the eigenvalues have been ordered such that x., j = 1,2,....M are

positive and Aj, J=M+ 1, .....,N are negative. The quantities b are

given by
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(3.358)

Langley (1987) has shown through numerical computation that the value of
N, the number of frequency components, should be in the neighborhood of 200.
Vinje (1983) and Naess (1986) used N = 8 in their computation with a slightly
different approach through matrix inversion which is too small for convergence

of results,

In Langley's (1987) method of pdf for second-order forces and motions,
the cumulants may be evaluated from the eigenvalues, Aj, as

n

A, (3.359)

k =(n-1) 1 ¢
j J

n

Langley considered an example of a half-submerged circular horizontal
cylinder of 10m radius in long-crested beam seas. Only the sway motion of the
cylinder was considered. The incident wave field was given by an ISSC
spectrum., Fig., 3.48 shows the probability density function of the force. The
force is highly non-Gaussian having a skewness of 1.96 and a kurtosis value of
5.87. The pdf of the sway motion for a damping factor of 0,005 is shown in
Fig. 3.49. It compares quite well with the corresponding Gaussian distribution
having the same mean and variance, However, it should be cautioned that at
the tail of the pdf, the agreement is poor so that the extreme value
prediction 1is expected to be quite different with an assumed Gaussian
distribution.

The total second-order response includes a linear and a second-order
term. Naess (1986) derived expressions for pdf of the pure quadratic response
term. On the other hand, Vinje (1976) derived the pdf of a weakly nonlinear
response from Taylor expansions of cumulants. Kato et al. (1987) obtained a
total second-order response probability based on the approximate theory of
continuous distribution., The total second-order response process of a moored
flcating structure was obtained in a closed form by the difference of two
random variables which yield the Gamma distribution. In this case, the pdf of
the second-order response, x, was obtained as
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6
p(x) = C ¢ X =~ e 1
r=0 r (ml = r) r (r +Ty a
for x » 0 (3.360)
and
Ma=~1 X
D) = ¢ g r (m2) r (m2 +r) (-x)mz- r-l[_l_-)m1 +r . /202
- r{m, -r) T (r+1) a
r=0 2
for x < 0 (3.361)
where
5. + 8 V.
a=——2 no-dg-o1,2, (3.362)
25.% T
172
and
¢ = — 1 (3.363)
P B
(28) * (28)) “ 1 (m) T (m,)

The parameters, 51 , and degrees of freedom, 31 , are given by

2
. 2
61.—(>:>\1.J.+ZCJ- /4)z|A1.J.| (3.364)
L A 2
v = (1) C = 1,25 5= 1,2,00en (3.365)
2 2
(:z M tey /e )

and T is a Gamma function, A5 (j = 1,2,.40.,n) are the eigenvalues while M j
(j = 1,2,...n1) and A2j (i = 1,2,....,n2) are the positive and negative
eigenvalues (n = n; + ny), cj are the coefficients of 1{near Gaussian random
variables. The summation in Egqs. 3.364 and 3,365 is on j.

From the statistical properties of the Gamma distribution, the first- and

second-order cumulants are given by
K. =Z A, =2m 0, - 2m 6 (3.366)
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2 2

2 2 =
+ 4m262 (3.367)

K, =212 Aj + z Cj = 4m16

2 1

where K; is the mean value E(x) and Ky, the variance V(x) of the second-order
response.

The pdf of the slowly varying sway motion of a moored floating
rectangular cylinder obtained from the above formulation is given in Fig.
3.50. The Gaussian distribution as well as the pdf from Naess formulation is
also shown., The latter matches well with Kato, et al. (1987).

Fig. 3.51 compares the probability distribution of a pure second-order
response with that of the total response including the first-order term. The
asymmetry of the total second-order response is higher,

3.4 SHORT-TERM RESPONSE MEASUREMENTS

Many offshore structural models have been tested in the CBI wave tank.
These tests involved both fixed and floating structures and included random
waves generated in the tank.

Waves are generated in the test tank using a pneumatic type wave maker,
The wave maker consists of a low pressure blower connected to a large open
bottom plenum chamber that is partially submerged in the tank. A flapper
valve between the plenum and the blower controls the pressure in the plenum
chamber. By changing the position of the flapper, the inlet or the outlet of
the blower can be connected alternately to the plenum, causing the water level
in the chamber to alternately rise and fall. The cyclic motion of the water
in the plenum chamber generates the waves in the tank.

The position of the flapper valve is controlled by a hydraulic servo
system., The system accepts both a flapper position feedback signal from a
transducer at the flapper and a reference signal, and operates a hydraulic
cylinder to cause the flapper position to match the reference. The amplitude
and frequency of the generated waves are directly related to the amplitude and
frequency of the reference signal,

The method of random wave generation is similar to that described in
section 2.2, Random waves are created through the summation of a large
number, e.g. 200, of sinewave components of various amplitudes and random
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phases. By tailoring the amplitudes of the frequency components, a desired
ocean wave spectrum can be modeled. The wave reference signal is initially
calculated and stored as a digital time series. To generate the analog
reference required by the servocontroiler, the stored time trace is output one
point at a time through a digital to analog converter under the control of a
dedicated microcomputer, By generating waves from a stored time series,
identical waves can be repeated for any number of tests.

The results on the responses of structures tested in the tank in random
waves are presented in this section., The structures that are considered for
this presentation are fixed vertical and inclined cylinders, articulated
towers, barges, tankers and semisubmersibles., For the fixed structures, the
wave loads were measured whereas for the moving structures, the loads and
motions were recorded. The short-term distribution of these quantities are
presented and compared with theoretical distribution function. Where appro-
priate, discussions have been presented in correlating the measured distribu-
tion with the theoretical techniques presented in the earlier sections.

3.4.1 Random Wave Load Tests

A series of tests were conducted with circular cylinders of various
diameters fixed in waves. A small section of the cylinders was instrumented
to measure two component local forces. The cylinder was orientated to measure
the inline and transverse or 1ift forces on them. The instrumented sections
were placed under water so that they were never exposed in air during the
passing of waves. The orientations of the cylinders were changed from the
vertical to inclined in a few test setups. In some cases, currents were
generated along with the random waves. This section provides results of the
waves generated, kinematics measured at the instrumented sections and forces
on these sections,

3.4.1.1 Vertical Cylinder

In a test series in the CBI tank with a 3 inch diameter fixed vertical
cylinder, forces due to random waves on two 1 ft. smooth sections of the
cylinder were measured, Two random waves were chosen having broad band
spectra with a bandwidth parameter, ¢ of about 0.70 but different frequency
distribution, A plot of one of the wave spectrum is shown in Fig. 3.52., A
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small portion of the measured wave profile and in-line and transverse forces

on the two instrumental sections is shown in Fig. 3.53.

Correlations are made of the measured in-line force spectra with the
theoretically computed spectra. The hydrodynamic coefficients are considered
constant over the frequency range of the wave spectrum and are chosen based on
an equivalent KC number. In this regard it should be noted that it does not
seem appropriate to assign values of Cy and Cj based on individual waves in
the spectrum depending on a small frequency band. In fact, an attempt to
derive the KC number on this basis by dividing the spectrum into several small
frequency bands of equal width showed that the method is rather impractical
and produced values that are not realistic. An equivalent KC number may be
defined in several different ways. An equivalent KC number may be obtained,
for example, based on the rms value of the water particle velocity and a mean
zero-crossing period obtained from the moments of the wave spectrum.
Calculation for one of tne measured wave spectra showed that o, = 0.388
ft/sec. and T; = 2,2 sec, so that the equivalent KC number is computed as

o,T,
Kceq =75 = 3.4 (3.358)

From Fig. 2.6, this value of KC gives a mean Cy = 2.2 (£0.35) and a mean
Cp = 0.8 (10.5).

Correlation of force spectra is based on Borgman's (1972) method with the
drag force spectra approximated by its linearized term. The values of Cy and
Cp chosen for all measured force spectrum correlations are

Cy = 1.90
Cp = 0.10

These values correspond to a KC value near the equivalent KC number of 3.4,
but are chosen strictly to give a good fit of the computed force spectra to
the measured. While the chosen Cy and Cp values are within the range shown in
Fig. 2.6 for KCeq = 3.4, these values are low and fall near the Tower limit of
the variation at this KC value. The correlations of the force spectra are
shown in Fig., 3.54 Note that the correlation is good in general, Thus, it
has been possible to obtain good correlation with constant Cy and Cp values
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over the frequency range of the wave spectrum, Moreover, these values
correspond to an equivalent KC number based on the rms velocity and mean
period of the wave spectrum, albeit at their low end of the range, in these
cases.

The transverse force on the cylinder due to these random waves has been
generally small, A measured transverse force spectrum is given 1in Fig.
3.55, Note that the peak frequency of the spectrum (wO) is at about twice the
frequency of the peak of the wave (or in-line force) spectrum. Thus, the
transverse force, while irregular in nature, has frequencies that are
generally twice the component frequencies of the random waves.

3.4.1.2 Inclined Cylinder

Similar tests were conducted with a 6 inch diameter inclined cylinder
near an inclined plane boundary. The slope of the boundary was changed from
0% to 40° and 70° with respect to the horizontal. Similarly, the uniform gap
between the cylinder and the boundary was varied from 0.25 inches to 2.5
inches and 4,5 inches. Several random waves were generated past the cylinder
for each boundary gap and each slope. The random waves were modeled after the
Bretschneider spectrum and were three minutes in duration,

A sample spectrum from the wave generated in the tank is shown in
Fig. 3.56. A small portion of the corresponding measured wave profile, water
particle velocity and in-line and normal forces on the instrumented section is
shown in Fig. 3.57. The data are presented from the smallest cylinder-
boundary gap of 0.25 ins. The velocity and load in the in-line (X) direction
follow the wave profile reasonably well with one-to-one peaks. However, the
normal load (in the Y direction) has twice as many peaks as the wave. The
additional peaks are due to the second harmonic component in the force.
Moreover, the downward force is much larger than the upward force. At the
larger gaps, the normal force frequencies follow the wave frequencies and the
asymmetry in the profile disappears. A sample calculation was made of the
linearized drag force spectra. For the wave spectrum chosen, we nbtain the
rms velocity, o, = 0.2 ft/sec. and the mean zero-crossing period, Té = 2.0
sec, Then, an equivalent KC number is computed as
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KC__ = = 0.8 (3.369)

For this KC value, the drag coefficient from Sarpkaya's (1981) data is
Cp = 1.0. The drag force spectra computed with these values was on the order
of 1% of the inertia force spectra. Since the drag force contribution is
insignificant, for the subsequent calculations Cp is taken as zero.
Therefore, the computation of the force spectrum is rather straightforward,
The correlations for the in-line force spectra for all gaps and the three
slopes of 0°, 40° and 70° are shown in Figs. 3.58 - 3,60, respectively. Note
that the correlation is good in all cases.

The normal force on the cylinder due to random waves was generally small
in all cases except for the smallest gap of 0.25 ins., This is evident from
the measured normal force spectra given in Fig. 3.61 for gaps of 4.5 and 0.25
in. Note that there are two distinct peaks in the spectrum for the 0.25 in.
gap; one at the peak frequency of the wave and in-line force and one at twice
this frequency. There is a third peak at a low frequency corresponding to the
set-down shown in Fig, 3.57. The correlation of the linear part is made using
the above procedure. The spectra due to second harmonic is computed from the
transfer function measured in regular waves [Chakrabarti and Libby (1987)] and
the following relationship

Sp(2f) = 8S2(f) [RAO(f)12(af) (3.370)

where RAQ = transfer function and Af = frequency increment in the estimate of
S(f). This formula dis similar in form to that used in the drift force
spectrum computation [Rye, et al. (1975)]. The shape .7 the two spectra in
Fig. 3.61 is similar., However, the correlation may only be termed fair.

3.4.1.3 Force Distributions

It has been shown by several investigators earlier [Goda (1985)] that
aven for a relatively broad band wave spectrum (e < 0,7) Rayleigh distribution
provides a good approximation to the individual wave heights defined by the
Zzero-upcrossing method., If the wave heights follow Rayleigh distribution and
respznses due to waves are linear with the wave heights then it is straight-
forward to show that the response amplitudes also follow the Rayleigh
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distribution. Thus, if the forces measured on the cylinder are strictly
inertial then these random force amplitudes may be descrihed by the Rayleigh
distribution function.

From the earlier force correlation it is found that the drag force
contribution in the total force is quite small, For the vertical cylinder
tests, the cummulative distribution of the wave heights and in-1ine force
double amplitudes (heights) are shown in Figs. 3.62 and 3.63, respectively.
It is found that the forces follow the Rayleigh distribution function as good
as or better than the wave heights. The wave heights show some departure at
the high end of the distribution function, The 1in-line response has a
somewhat similar trend. While the overall correlation seems satisfactory in
both cases, this deviation at the upper tail may be important from the point
of view of the extreme value analysis.

The transverse force, on tne other hand, while <mall in magnitude, shows
a significant departure from the Rayleigh distribution., Note that the t1ift
force has a form

f(t) =3¢ oD [u(t)I? = clu(t)]? (3.371)

i.e., the 1ift force is proportional to the velocity squared. In the above
expression, the value of C_ is assumed to be constant with time, This
assumption is not strictly correct because the 1ift force is irregular,
However, if the most predominant 1ift force frequency is twice the wave
frequency, this assumption is reasonable, This form is similar to the wave
drift force profile, Langley (1984) showed that for a wave drift force, the
asymptotic initial distribution of the drift force profile for a narrow band
spectrum follows an exponential distribution. For a wider band spectrum, the
distribution is sharper depending on the value of gq. Borgman (1972) has shown
that on a narrow band assumption, the drag force amplitudes follow an
exponential distribution, The 1ift force due to regular waves may be
approximated by the formula
2

fL = kL U, €Os 2ut (3.372)
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where k; = 1/2 ¢ o D. In this form, the other frequencies in the irregular
1ift force profile are ignored as small. Then, the maximum 1ift force in
regular waves is given by

(3.373)

Following a method similar to Borgman's (1972) for the drag force amplitudes,
the 1ift force amplitudes may be expected to follow the exponential
distribution at least on a narrow band spectrum assumption. This distribution
may then be given by

¢ ;
. L L
P(fL) =1 -exp [- — ] =1 - exp ["(r“y—" ] (3.374)
k, u L’ rms
L “rms
where fL = amplitudes of f5 and uppe = rms value of the water particle

velocity and (f.),.",S = kL u The correlation between the measured 1ift

rme *
force amplitudes and the eprﬁéntial distribution is shown in Fig. 3.64. From
this correlation it is seen that at least at the low end of KC number (< 10)
the 1ift forces do not follow the exponential distribution well, especially at
the intermediate range of the independent variable. On examining the 1ift
force profile, it is found that the frequency contents of the 1ift force
correspond to the wave and the inline force frequencies as well as twice these
frequencies. Thus, the distribution of the iift force amplitudes is between
the Rayleigh distribution and the exponential distribution function and may
have to be obtained as a distribution of a polynomial series in the powers of

velocity.

The forces measured on the instrumented section of the inclined cylinder
in the in-line (X) and normal (Y) directions with respect to the cylinder axis
are mostly inertial. Therefore the random force amplitudes are described by
the Rayleigh distribution function. At the smallest gap, however, the normal
force had larger force components at twice the frequencies of the wave
frequencies and may not be expected to follow the Rayleigh distribution
function well, The normal force is expected to be a mixed distribution, When
the second harmonic is small, e.qg., for larger gaps, the distribution will be
closer to the Rayleigh distribution,
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The cummulative distribution of the wave heights, in-line and normal
force amplitudes for random wave runs with a 0° slope and gaps of 2.5 in. and
0.25 in, are presented in Figs. 3.65 and 3.66, respectively. The wave heights
and in-line forces are found to follow the Rayleigh distribution reasonably
well even though the departure from the theoretical curve is not
insignificant. Part of this deviation may be due to a large bandwidth. The
normal force for the larger cylinder/boundary gap of 4.5 ins. has a similar
correlation. However, the normal force at the 0.25 in. gap compares poorly
with the Rayleigh distribution, The distribution of the measured force
amplitudes rises more sharply than the Rayleigh curve and corresponds more
nearly to the exponential distribution, It is possible that the correction
required for a larger band width may improve this correlation as shown by
Langley (1984) for the initial drift force distribution.

Additional test runs were recently made with a 2.5 inch diameter vertical
cylinder with a 1 ft, instrumental section submerged 1 ft. below the still
water level (SWL). Besides the wave profile, the velocity components at the
center of the instrumented section (18 inches below SWL) were measured. Two
random waves having similar significant wave heights (HS = 8.4 - 8.5 inches)
but slightly different peak frequency (Fig. 3.67) were chosen. The
probability density of the wave elevation and horizontal velocity for these
runs is compared with the Gaussian distribution on the top of Figs. 3.68 and
3.69. The probability density of the inline load and the cumulative
distribution of its amplitudes are shown in the middle along with Gaussian and
Rayleigh probability respectively. The transverse (or 1lift) force is
correlated with the exponential distribution at the bottom of the figures.
The wave and the velocity profiles follow Gaussian distribution even though
there is some random departure in the case of the velocity. The inline force
seems to be asymmetric and skewed to the right in both cases. This trend is
definitely comparable to the distributions derived for linear-plus-quadratic
terms by Kato, et al. (1987) in Fig. 3.51.

The transverse force probability density function is generally symmetric
and sharply peaked compared to the Gaussian density function, This is,
however, expected as there are numerous small peaks due to higher harmonics
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present in the lift force which provides a bias towards its mean value,
Because of the presence of multiple harmonics, correlation with the
exponential distribution is not satisfactory.

Additional test runs were made in the presence of uniform current. In
these cases, the horizontal particle velocity was measured as well at the
center of the instrumented section. The random wave run was repeated with an
inline and an opposing current having a strength of y = 1.0. The horizontal
velocity and the inline load histograms are correlated with the Gaussian
distribution in Fig. 3.70. The top plots represent waves without current
while the bottom ones correspond to the inline and opposing current
respectively with the waves. The horizontal velocity and inline loads follow
the Gaussian distribution in the absence of current, While current is
present, the distribution represents a non-zero mean, positive or negative
depending on the direction of current. Moreover, there is a small tendency of
the histograms to be skewed towards the zero value with respect to the mean.
This skewness is more pronounced for the inline load in the opposing current.

The distributions of the transverse forces are shown in Fig., 3.71. The
left-hand sides show the correlation of the force histograms with the Gaussian
distribution while the right-hand side plots represent the cumulative
probability distribution of the force amplitudes with the theoretical Rayleigh
distribution function. The departure from the Rayleigh distribution is quite
evident and is more pronounced in the adverse current case. Similarly, the
force profiles are more peaked compared to the Gaussian distribution,
particularly for the opposing current case, The transvere force, however, has

a zero mean in all cases.

3.4.2 Response of an Articulated Tower

An articulated tower was tested 1in random waves in which the inline
oscillation angle of the tower at the bottom as well as the horizontal load at
the universal joint were measured (Fig. 3.72). The random wave represented a
modified P-M <pectrum, The tower was subjected to a steady load from the
simulated wind. The histograms of the wave elevation, horizontal U-joint load
and tower oscillation are compared with the Gaussian distribution in Fig.
3.73. Note the non-zero mean values in the latter two cases due to the
applied steady load. The amplitudes of these measurements are compared with
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the Rayleigh distribution in the same figure, The correlation of the tower
oscillation with the Gaussian and Rayleigh distributions is reasonably good.
The horizontal load, however, show some deviation. The dimensions of the
buoyant tower relative to the wave were such that some drag dependence of the

load may be expected.

3.4.3 Response of a Moored Tanker

A tanker model moored by catenary anchored lines was tested in the wave
tank. The tanker model represented a 100,000 dwt displacement tanker class,
and the mooring arrangement was similar to the one shown in Fig. 2.30. The
load-clongaticn characteristics of the catenary system are shown in Fig.
2.31, During the test in random waves, the surge of the tanker as well as the
line tension in the forward mooring line were measured. The tanker was
ballasted at 50 percent and was subjected to a steady wind 1oad. One run also

included a steady current load.

The results for the line tension and tanker surge are presented here.
These data are digitally filtered to remove the high freguency oscillations
corresponding to the wave frequencies so that the responses correspond to the
lTow-frequency oscillation only. The histograms and cumulative distribution of
amplitudes of the line tension and tanker surge are correlated with the
Gaussian and Rayleigh distribution respectively in Figs. 3.74 and 3.75. These
runs correspond to two different random waves and wind; the second one having
steady current as well, The distributions are somewhat asymmetric about the
non-zero mean value, but otherwise, close to the Gaussian distribution

function,

3.4.4 Response of a Barge

A conventional barge model was tested in the CBI wave tank. The barge
was 12,5 ft. long, 3.25 ft. wide and had a draft of 0.42 ft. It was moored in
head seas by a lipear spring tore and aft such that it had a natural period in
surge of approximately 30 seconds. The details of the barge characteristics
have been reported by Chakrabarti (1982), The mooring line load and surge

motion of the barge were measured in random waves,

The data was filtered as hefore to remove the high frequency oscillations
using a high pass filter with a cut-off frequency of 0,2 Hz, The results are
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presented in Figs. 3.76 and 3.77. There are two limitations that can be
stated regarding this set of data, First of all, the length of data runs was
Timited (five minutes of model time). It has been shown by Pinkster, et al.
(1987) that the statistical parameters should be unstable for short duration
of runs. Moreover, the number of components used to generate waves were also
small., These limitations are evidenced in Figs. 3.76 and 3.77. While the
individual measurements correspond to each other, any trend in the histogram
data is lacking.

3.4.5 Response of a Semisubmersible

A model of a semisubmersible pipelay barge design was tested in the CBI
wave tank, The major dimensions of the semisubmersible were 8.1 ft. long and
2.8 ft. wide. The barge was composed of twin hulls and six legs supporting a
box superstructure, It was ballasted at the legs to a draft of 0,78 ft., The
model was moored to two fixed points by linear springs, The springs on the
fore and aft sides of the model were identical with a spring constant of 0.49
1bs/ft. each, The spring constants were chosen so that the translational
natural period of the moored system was about 30 sec. The mooring lires were
instrumented with load cells, In addition to the wave elevations, the dynamic
pressure in the free-stream flow, one foot below the still water level, was
also recorded.

The results for these measurements are shown in Fig. 3.78 for a P-M wave
spectrum and in Fig, 3.79 for a JONSWAP wave spectrum. The data for the line
Toad was likewise filtered as before to retain only the low-frequency loads.
Thus, the correlations with the Gaussian distribution in Figs. 3.78 and 3.79
correspond to the high-frequency wave as well as corresponding dynamic
pressure and low-frequency iine load. Note that the Tine loads are biased
towards positive values and show poor correlation with Gaussian.

3.5 LONG-TERM RESPONSE PREDICTION

The 1long-term refers to the desired lifetime of a marine system or an
ocean structure. During this period of time, the structure experiences a
ltarge number of seas from very small to very large., Each of these individual
seastates is a short-term phenomenon and may be treated as a linear or

noniinear excitation depending on its size. Similarly, the responses may be
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linear or nonlinear depending on the type and size of them. Thus, it is
understood that Tong-term response statistics would include both linear and
nonlinear response parameters, In long-term statistics, a few statistical
parameters representing individual short-term seas, whether Tlinear or
nonlinear, are required. Thus, the long-term statistics involve parameters
obtained from both linear and nonlinear analysis, even though many of the
severe seas will produce parameters involving a nonlinear system,

There are two types of information useful in the study of the long-term
statistics of waves. One 1is the sea severity. The severity of sea is
generally expressed in terms of the significant wave height or significant
wave height coupled with the associated zero-crossing or modal wave periods.
In this case, the probability distribution of H. or the joint distribution of
Hg
probability of individual wave heights.

and Tz (or Tp) is needed. The other type of information is the long-term

Unlike individual waves in the short-term record, no theoretical method
is available to derive the probability distribution of the significant wave
heights or the joint distribution of H¢ and TZ . These distributions are
obtained from actual measurements in the oceans at frequent intervals over a
reasonable period of time (e.g., several years). The distributions of these
significant wave heights have been compared with known distribution functions
in order to examine their suitability. 0f the available distribution
functions, e.g., described in Section 3.1, the common ones considered most
often are the Weibull and log-normal distribution. Correlations have shown
[Ochi (1982)] that the Wiebull distribution is poor at small Ho values while
log-normal underestimates H¢, at the large values of Hc. The log-normal
distribution seems to be slightly better, 1in general, and has certain

advantages, as well,

The zero-crossing wave periods have also been found to follow log-normal
distribution quite well, Since both height and period individually follow
log-normal distribution, it may be shown [Ochi (1973)] that their combined

statistical properties follow bivariate log-normal probahility law,

A Tong-term probability defines events and extreme value statistics for a
period on the order of 20-100 years, as opposed to a few hours for the short-
term probhability. The concept of extreme waves 1is assoriated with that of

design waves for an offshore structure, In order to obtain a lInng-tern

148




probability of wave heights, the wave height data at a particular site are
collected over the period of a few years, The wave heights are plotted on a
suitable probability distribution paper so that the distribution of the data
appears as a straight line. Then the straight line is extended to the desired

return period to obtain the extreme wave height,

If information is available for numerous short-term statistics of the
wave heights ther the long-term probability of wave heights may be obtained by
the following simple method of order statistics. The short-term wave heights
are ranked in the order of higher wave heights. [If there are N short-term
wave heights over a long-term period such that TL is the long-term period and

Tg is the short-term period, then

L
S
Ty is also termed the return period or recurrence interval of the maximum
wave. The probability distribution of the wave height is given by

P(H ) = N—TT (3.376)

and .ne probahility of exceeding a given height is

oH ) =1 - % (3.377)
In order to obtain the total probability, this figure should be multiplied by
the short-term probability, The Tlong-term probability could seldom be
nbtained by the above method because of Tlack of Jlong-term wave data.
Therefore, one has to rely on a theoretical probability distribution
furction, There are several such formulas available as discussed in
Section 3.1, Suitability of these formulas to a particular instance may he
established with limited field data that may bhe available. Since little or no
data are usually dvailable at the upper taii of the probability distribution,
fitting different distributions and choosing the most suitable one is always a

difficult task,




3.5.1 Bivariate Short- and Long-Term Distribution

3.5.1.1 Short Term

Because of the variability of wave spectral shape, Ochi (1978) advocated
use of a family of wave spectra for given significant wave height and peak
frequency. Using the two-parameter spectral model of modified P-M, he showed
that in the short term (P(e) < 0,99), the significant wave height and peak
frequency follow 1log-normal distribution. The statistical properties of
combined wave height and wave period then follow a bivariate log-normal
probability distribution. The conditional distribution of the peak frequency,
wy, for a given significant wave height, He, is written as

inTh - u
0 TOIH

1 exp | - %- 2 (3.378)
V1 - p2 or Y on TO Y1-02T

0

p(Tole) =
0

where the probability of Tg vefers to a given Hg, Wy = 27 / TO g =
correlation coefficient between wave height and period, p and ¢ refer to mean
and standard deviation and

0 D—OH—' (]n HS - UHS) (3.379)

u =y
T0|HS T
Analyzing the recorded North Atlantic wave data, Ochi (1978) obtained the

expressions for the most probable as well as the upper and lower values of the
peak period. The most probable peak period is given by

o

T
0

To(m) = exp | Wyt B——-(]n HS - uHS) -/ 1 -0 97 ] (3.380)

0 HS 0

while the upper and lower values of the peak period for a given confidence, v,

is written as
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(o]
Tn
To(y) =exp [ up+ p=——=(InH -, ) txvV1-pZ o | (3.381)
0 T0 % S HS T0
s

where the confidence level, y (= ¢) is a standard normal for the argument x,

X 2
o(x) = —— [ et /24t (3.382)

V 21 =

In particular, the values of x are

X ¢
1.96 0.95
1.44 0.85
1.15 0.75
0.67 0.50

If x is set equal to 1 in Eq. 3.381, then the most probable value of Ty (Eq.
3.380) is obtained. From the mean North Atlantic data the peak period for
various confidence coefficients are shown as functions of the significant wave
heights, The equations for the peak frequency for the various confidence
values are given in Table 3.6,

An example of how this family of spectra may be used to predict the
extreme responses, the formulas for the most probable extreme value and the
design extreme value are considered as follows. The design extreme value of a
response amplitude, §n , is given in

T m
" - S 0
y,(R) =2 1n {—(—M RN V—mz } /_mo (2.383)
in which R = risk factor, Tg = largest duration of sea in secS., and N =

number of encounters with a specified sea in the structure's lifetime. For
the most probable value, }h, in the above equa*ion, R = 1, and N = 1,

Ochi (1978) presented results of a numerical analysis on a semi-
submersible in which the transverse forces in a beam sea are computed, The
extreme values of the transverse forces for various seastates are shown in
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Fig. 3.80. The most probable as well as upper and lower extreme values for
the modified P-M spectra are given in the figure. In the computation, the
beam seas are assumed to be exposed a quarter of the assumed 20 year life.

3.5.1.2 Long Term

In contrast to the short-term prediction, the 1long-term prediction
experiences all waves encountered by the structure, large and small, This is
important from the standpoint of the fatigue life of the structure. The long-
term predictions also deal with the extreme of the response in the lifetime of
the structure. In order to evaluate the long-term extreme response, the long-
term wave statistics must be known. This may be accomplished in the form of
the frequency of ozcurrences of all possible seastates or the long-term joint
probability distribution of wave height and wave period,

The frequency of occurrence for the seastates in the North Atlantic was
obtained by Ochi (1978) and is shown in Table 3.7. The product of this and
the short-term probability of a family of seastates may be obtained as the
long-term probability. The short-term probability will depend on whether the
system is linear or nonlinear. The probability function for the nonlinear
system depends on the type of nonlinearity, some of which have already been
covered in Chapter 3.

The short-term distribution of a narrow-banded Gaussian response
variable, x, follows the Rayleigh distribution function

Ps(x) =1 - exp(-x/ /_F)z (3.384)
where £ varies linearly with wave amplitude, and is estimated from wave
spectra and transfer functions by means of the 1linear superposition
principle. Thus, the statistical short-term distribution of a response
variable is completely defined by one single parameter, E, for given structure
size, heading angle, forward speed and seastate (T, HS ). For nonlinear
systems, E will not vary linearly with H, but a single response value may be
obtained for a given seastate. In this case, Rayleigh distribution function
is not appropriate, and additional parameters may be needed to describe the
probability.
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TABLE 3.6
MODAL FREQUENCIES FOR THE (MEAN) NORTH ATLANTIC WAVE SPECTRA
AS FUNCTIONS OF SIGNIFICANT WAVE HEIGHT [OCHI (1978)]

Y VALUE OF uy
Lower wy 0.95 0.048 (8.75 - &n H)
0.85 0.054 (8.44 - an H)
0.75 0.061 (8.07 - 2n Hy)
0.50 0.069 (7.77 - &n Hg)
Most Probable 0.079 (7.63 - n H¢)
Upper uy 0.50 0.099 (6.87 - 2n H)
0.75 0.111 (6.67 - tn H)
0.85 0.119 (6.65 - 2n H)
0.95 0.134 (6.41 - 2n H)

NOTE: wg in rps

HS in meters
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TABLE 3.7
FREQUENCY OF OCCURRENCE OF VARIOUS SEASTATES
IN THE (MEAN) NORTH ATLANTIC [OCHI (1978)]

SIGNIFICANT SIGNIFICANT

WAVE FREQUENCY WAVE FREQUENCY

HEIGHT OF HEIGHT OF
(m) OCCURRENCE (m) OCCURRENCE
<1 0.0503 9 -10 0.0079

1 -2 0.2665 10 - 11 0.0054

2 -3 0.2603 11 - 12 0.0029

3 -4 0.1757 12 - 13 0.0016

4 -5 0.1014 13 - 14 0.00074

5 -6 0.0589 15 - 16 0.00045

6 -7 0.0346 16 - 17 0.00012

7 -8 0.0120 > 17 0.00009
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The long-term non-stationary response process is written as a sum of a
lTarge number of short-term stationary processes. Therefore,

P(x)= [ P(x)p(VE) dVE (3.385)

where P, is the long-term probability.

The 1long-term distribution of v E is scmetimes assumed log-normal.
Likewise, the long-term distribution of response amplitudes 1is assumed log-
normal [Jasper, et al, (1956)].

Nordenstrom, et al. (1973) obtained a long-term distribution from data
from seven different ships by formal integration of the above equation. They
grouped the measured v E values (of longitudinai bending moments) into five
Beaufort groups and found that the long-term distribution of v E within each
group was approximately a normal distribution. The integration was carried
out separately for each Beaufort group and the final long-term distribution of
amplitudes was obtained as a weighted sum of 1long-term distributions for
Beaufort groups.

Lowis (1973) made a similar analysis for ship bending stress. The actual
stress (trough to peak) in any record were Rayleigh distributed., The total
weather system was divided into n weather groups. In each weather group, the
mean square values of stress, v E from many records were normally
distributed,

Nordenstrom (1973) investigated a distribution function which was in-
hetween the normal and log-normal, but closer to the normal one and was
capable of describing the entire range of Y E . This function was found as
the Weibull distribution function

P(VT)=1-exp | -~ ( VE/a)" | (3.386)

where a and m are parameters. Note that m = 1 gives expnnential distribution
while m = 2 yields the Rayleigh distribution., The Weibull distribution was
based on 1577 full scale recordings of longitudinal stress amidships on seven
ships, as well as other published data. The resulting long-term distribution
of amplitudes was found to be another Weibull distribution
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i1 2 X

- - ‘ r X
P(x) =1 - exp | E 3. (3.387)
where the parameters b and k are functions »f m, A method of obtaining this
Weibull distribution and the values of the parameters 1involved has bheen

described by Nordenstrom,

The long-term response depends at least on the following quantities each
having an assigned weighting factor: (a) sea severities, (b) spectral shape,
and (c¢) number of cycles in the response due to a seastate. Considering these
factors, the long-term probability density function is given by

o Ngpy P p(x)
i

p,(x) = —=— (3.388)
where p{x) = short-term response probability density function
\ - e I O ey e
Ng = number of shgrt-term responses ?;-/ mz/mo
Py = weighting factor for sea condition (state)
P; = weight factor for wave spectrum shape

The total number of resporse expected for the lifetime of the structure is

given hy
N o= T ; ws P, pjTL (3,389
1]
where ) 15 lifetime 17 seconds,

Jeri (19731 utilized tre above approach in computing the Tlong-term
respnnse of the semisybmersihle 1aads in beam sea, Two different methods
produced two probability furctions from which tne extreme values are shown in
Fig., 3.81. Mote that the extreme valiues estimated hy the two methods of long-

term prediction agree quite well,

3.5.2 Time anc Freguency Nomain igno-Term Prediciions

When tne long-term propanility density funchiarn f9r 3 resporse 1S not

known, whereas the long-term distringtinr 9f waves is jiven in g tabular fors




in terms of probability levei for the pair of wave parameters, H¢; and T,, then
the short-term response due to long or chort-crested waves are computed
first, It is then extended to a long-term distribution based on the available
wave data. This method is applicable in the frequency domain for a linear

system [e.g., Fukuda (1968)].

Assuming that the response, e.g., the bending moment of a ship addressed
by Fukuda is a linear function of the reqular wave amplitude, the short-term
distribution of the bending moment in a short-term sea follows the Rayleigh

distribution. The standard deviation, o, of the bending moment in a short-

m
crested wave of constant heading is given by

i o
o 2= ] 1 M, 6 - 817 S(e, ©) du do (3.390)
m 70 0
where 6 = angle between wave component and mean wave direction, 63 = ship

heading angle with respect to the mean wave direction, and the transfer
function, H, corresponds to the heading angle, 6ge The directional sea may be
assumed to be given by the cosine square law
% S(w) cos’s, - % <5<
S{w, 9) = { (3.391)
0, elsewhere

~N] =

Then, the variance due to a short-crested sea is given by

n/2 e
2_2
i

5 © = ) (Hlw, 9 - 60)]2 S{w) c0529 dw d6 (3.392)
-n/2 0

m
where S{.) is a theoretical or measured spectral energy density. It should be
noted here that for the long-term response prediction the shape of the
response spectrum is not important; only the variance of the short-term

response is needed,

Once the short-term response parameter, o, for a linear system is known,
the prohbability of exceedance of the variable M (e.g., the amplitude of the
bending moment) beyond a given M, is given by
f 1

gt > Ml) = exp | - >

(3.393)
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Assuming that the probability density function of o is given by p (o), the
long-term probability of exceedance is obtained from the integral
2

L 1 plo)do (3.394)
20

o M
QL(M > Ml) = fo exp [ -

which is evaluated by replacing the integral by a summation,

Let Pij denote the long-term frequency of occurrence of a short term wave

given by the significant wave height, H;, and the average period, T Also,

J'o
let o4 ik denote the short term response parameter for this wave and for a wave

angle of 8, where k is the kth equal interval between -n/2 and n/2, Then the

probability for all waves at thie heading angle, &, is givan by
2
"
Qk(M > Ml) = Z ;exp ( R ) pTJ (30395)
i 201.\].k

If it is assumed that the long-term probability is uniformly distributed for
heading angles between 0 and 2w, then the total probability is obtained from
21

QM > M) = g~ : Q (M > M) (3.396)

8
where Ng is the total number of intervals of heading angle between -n/2 to
n/2. Usually a 10-15° increment of heading angle is sufficient for response

calculation for the short-crested waves.

The above method is applicable only to linear systems, i.e., systems in
which the response function is related to the excitation, e.g., waves, in a
linear fashion such that if the wave amplitude is doubled the response
amplitude also increases by a factor of two. When this relationship between
the wave and the response does not exist, a more elaborate time domain
analysis, sometimes termed total system analysis, may be used. It should be
noted that this method is extremely time consuming and is prohibitive to use
routinely in the design of a structure. It may be used as a benchmark for
other more efficient albeit approximate methods.

The time domain analysis is applied to the short-term response
prediction., For a given wave energy density spectrum, e.g., given by the

156




parameters, H; and Tj, a time history of the wave is generated by one of the
methods such as outlined in Chapters 2 and 3.

From the relationship between the response and the regular wave (e.g.,
wave force given by the Morison equation in terms of the water particle
velocity and acceleration), the time history of the response due to the short-

term wave (Hj, T;) may be computed. The method of computation may include a

i)
finite—differencéJ or a finite-element scheme and may involve one of the
analysis methods outlined in Chapter 2, Considering the variability of the
spectral shape for a given (Hj, Tj), it has been proposed by Ochi (1978) and
Hoffman and Walden (1977) that a family of wave energy density spectra be used
in place cf 2 single cpecti;a! model, In this case, several time histories of
the response are generated, one for each spectral shape, Similarly, if the
wave direction is an important consideration for the response, then a response

time history for each increment of wave direction is needed,

From these short-term time histories, a histogram of the extreme values
may be constructed. This then will provide the probability density function
of the response from which the expected value and variance of the response may
be computed. It is sometimes possible to consistently fit a known theoretical
distribution through these histograms. In this case, the subsequent analysis
is much simpler as illustrated by the Rayleigh distribution for a linear
system earlier, Once all the short-term parameters for all possible wave
conditions are known by this method, the long term prediction of the response
may be carried out by the ordinary statistical method outlined earlier,

3.5.3 Extrapolation of Wave Scatter Diagram to Longer Duration

In order to cover all wave conditions over the entire service life of a
structure and obtain statistically reliable response predictions, particularly
the extremes, one should choose a period much longer than the period of wave
measurements, generally encountered in literature. Thus, extrapolat.on of the
measured wave scatter diagram is needed. Inglis, et al. (1985) showed that it
is desirable for the aforementioned reasons to consider a scatter diagram of
the sea states that is at Teast ten times the service life of the structure,
This will provide a much better value for the average occurrence of various
sea states,
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A simple method is outlined below to extrapolate a wave scatter diagram

to a period that is long compared to the structure's service life. It can be

achieved in the following steps [Inglis, et al. (1985)].

1.

Plot the cumulative probability distribution of the significant wave
height, P(HS) for the available observations on Weibull scales.

Determine the parameters A, B and C of the three parameter Weibuil
distribution
HS— A

P(H) = 1 - exp ( - 25— )° (3.397)

which fits the data.

Calculate P(HS) for a range of values of Hg in excess of the largest
Hg in the observations using the above Weibull distributicn,

Assuming one observation every 3 hours, the total number of
observations in 1000 years is 2921940, The number of occurrences in
1000 years, smaller than or equal to Hg* is

N(HS < HS*) = 2921940 P(HS < HS*) (3.398)
The number of occurrences of each Hs* value chosen is

N(HS*) = N, (H_ < (HS* + §8)) - NE(HS < (HS* - 68)) (3.399)

1''s

where ¢ is half the difference between two adjacent H,* values. Sum
all numbers of occurrences N(H.*) for H,* values exceeding the
nigiest 4o in the actual observations; this sum is Nt.

The number of occurrences N(HS*) are associated with an estimated
mean wave period, T,, such as, assuming a constant wave steepness.

The number of actual observations for each (Hg, T,) pair is finally
scaled up by the factor
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2921940 - N
Na

(3.400)
where N, is the actual number of observations. This gives the total
number of observations in 1000 years to the required total of

2921940,

3.6 Extreme Value Statistics

The extreme value is defined as the largest value expected to occur in a
certain specified period of time. Since the specified time may be
equivalently expressed in terms of number of observations of the variable
under investigation, extreme value may refer to a specified number of
observations. This specified time may be a short-term interval, e.g., within
a wave record of 30 min. duration, which 1is considered statistically
invariant. Alternately, it could be long term in terms of the lifetime of the
structure. The distribution function, P(e) of the short-term wave heights, as
a random variable, is called the initial cumulative distribution for extreme-
value statistics. Similarly, the corresponding density function is the
initial probability density function, On the other hand, the extreme wave
height as a random variable in N observations has a different probability law.

It the initial probability distribution is known, e.g., Rayleigh
distribution of wave heights in a short-term sea, then the extreme value is
straightforward to compute by the order statistics. On the other hand, the
extreme values may be estimated without the precise knowledge of initial
distribution if the measured data or maxima are available, In the latter
case, an asymptotic ex.reme-value distribution is obtained.

As mentioned ecrlier, the probability distribution of extremes is
different from the 1initial distribution, Thus, the probability density
function of extreme wave heights, y, is

aly,) = n Ip(x) [P()" M, (3.401)
n
A ine cumnl2tin s Cdistreibutior is
_ n
Alyy) = LIPGAT ) y, (3.402)
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From the above two equations, the probable extreme wave height, Yp is

derived as
T~ aly,) =0 (3.403)

which gives

p' (y,) Ply) + (n - 1) [ply)1% =0 (3.404)

n

Assuming P to follow Rayleigh distribution, Longuet-Higgins (1952) showed that

2 2 2
N Y, r Yy )
2——nexp [ -— )] - [exp ( - 5 ) -1} =0 (3.405)
Xrms *rms Xrms

Neglecting second term as small for large N, y, is solved as

Yo =72 Tnnx (3.406)

rms

which is equivalent to Eq. 3.70.

In the previous discussions, the maxima were assumed to be statistically
independent which render the derivation simple. On the other hand, for a
narrow-band spectrum, the maxima changes slowly through envelope process and
are, therefore, highly correlated. The statistical dependence of maxima may
be included through the concept of Markov chain condition. In this method,
the magnitude of a maximum point depends on the immediately previous one, but
not any other prior ones. In this case, the joint probability distribution of
two successive maxima is needed., This is illustrated and derived by Ochi
(1982).

In the approximate method, measured or observed maxima over a certain
period (e.g., a number of years) are ranked and fitted with known probability
distribution curve., If the fit is good, the distribution function is used to
ubtain cxtremes., In case the match is poor, the ranked data are plotted on a
probability paper as
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1 - P(x) % (3.407)

and extended for extremes over a certain return period. However, this method
may not bhe satisfactory as it relies on highest waves whose measurement may
not be very reliable. An alternative scheme of representation by fitting the
entire data by a least squares method has been discussed by Ochi and Whalen
{1980),
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4.0 EVALUATION OF PROBABILISTIC APPROACHES

Several different methods have been described in the previous crapter
(Cha ter 3) in handling nonlinear problems in the prediction of extreme
response values. These methods are evaluated here regarding their assumptions
and limitations. Limiting values of their application are prescribed wherever

possible.

4,1 DISCUSSION OF LINEARIZATION TECHNIQUE

Une of the common methods of handling the stochastic description of
nonlinear responses is to linearize the nonlinear terms. Sometimes it is
convenient to retain the first few terms of the polynomial approximation thus
maintaining some of the nonlinearities in the system, In the linear case the
probabilistic description of the responses is simple and straightforward
specially if the sea surface is assumed to be a Gaussian random variable.
When higher order terms of the polynomial series are retained the problem is
somewhat more complex but is still solvable in a number of cases.

NDifferent methods or linearization have already been presented in
Section 3, Let us discuss the limits of applicability of these various
linearized terms. The often used polynomial approximaticns of several common
nonlinear terms are summerized in Table 4.1. The nonlinear terms in the table
relate to the drag term of the Moriscn fuormula or its modified form including
damping and relative velocity terms. As such, they have wide applications irn
the analysis of marine and offshore structures for both the evaluation of

exciting forces and corresponding responses,

On small members of a jacket structure, or on structures with flat
surfaces and sharp corners where flow experiences separation the wave drag or
wave-current drag 1is important, On moving structures, e.g. most of the
floating structures that experience resonance the rydrodynamic damping term
may be significant. On moving members, e.g., risers, tendons, catenary lines,

the relative velority drag term should be included.

On large floating structures moored with soft springs, e.g., single-point
mooring system, catenary anchored ships and semisubmersibles, slow-drift
cecillation occurs in certain degrees of freedom, e.g., surge., In this case,

nonlinearity appears from the nonlinear exciting forces (drift force) as well
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as nonlinear mooring line characteristics. Floating structures that are
tethered with taut vertical lines, e.g., TLP, experiences springing force in
their tendcns that are nonlinear. In this case, the damping is small and any
contribution from the nonlinear damping term may be important,

The most common form of nonlinearity that is often linearized for
convenience in the analysis is the nonlinear drag term found in the Morison
equation, The nonlinear wave drag term and the corresponding linear, cubic
and quintic approximations are shown in Fig. 4.1, The independent variable in
these plots is taken as the nondimensional quantity, u/o,. The nonlinear term
is quadratic. According to this figure, the linear approximation seems to be
reasonable for velocities of up to apou. two standard deviations. The cubic
term is good for u = 3o, while the quintic term is close for the velocity up
to about 4 standard deviations. In the spectral estimate of the load, the
cubic term has been shown to give rise to a triple convolution of the elocity
spectrum, Similarly, the guintic term will yield a fifth convolution integral
and, thus, will require more time-consuming computations,

The Tinear approximation of the hydrodynamic damping will provide a
similar plot as for the linear term in Fig. 4.1. In fact a similar higher
order polynomial approximation may be written for the hydrodynamic damping
term. The nonlinear damping term of this form may be handled in an equation
of motion by several approximate rmethods of solution, e.g., the Rayleigh-Ritz
averaging technique.

A general damping term may be written ir terms of the power nr the
absolute velocity where a = 0 refers to tie Cculomb friction, a =1
corresponds to linear damping term while o = 2 is the velocity-squared term,
Plots are presented in Figs. 4.2-4.3 showing the correlations between the
nonlinear and linearized damping terms for a = 2 and 3. For a = 0, the
nonlinear term takes on positive or negative constant values, =01
corresponds to the 1linear term and is, thus, exact, The region of
correlations for a = 2 and 3 is similar,

When current 1is present in waves the drag force 1is written in terms of
the relative velocity between the waves and current, In this case, the
linearization involves a constant term plus a linear term and depends on the
strength of the current given by Yy (= U/cu) in addition to the two
coefficients in the two terms. The correlation of the nonlinear drag term ard
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its linearization is shown in Figs. 4.4-4,6 for different values of y (= 0.1,
0.5 and 1.0, respectively). Note that the correlation of the linear term
becaies poorer as the strength of the current increases.

If the structure is allowed to move, the drag force on the structure is
given in terms of the relative velocity between the structure motion and the
water particle, In this case, the linearization is achieved [Eatock Tayor, et
al. (1982)] in terms of the relative velocity, u - x , as shown in Table
4,1, The correlation between the nonlinear relative velocity drag term and
the linearization for different structural motion amplitudes i/oU = 0,1, 0.2
and 0.3 are shown in Figs. 4.7, 4.8 and 4.9, respectively. In all cases the
correlation seems to be good for u/g, values of about 2.

4,2 DISCUSSION OF NONLINEAR EXCITATION STATISTICS

The linearization of nonlinear systems is only possible when the non-
1inearity in the system is relatively small., In Chapter 5, the limits of
arguments of nonlinear systems for which linearization technique is applicable
without serious errors will be discussed. For predominantly nonlinear
systems, this simplified technique is not useful, In these cases, one of the
methods outlined for non-Gaussian systems is applicable.

The non-Gaussian random waves found, for example, in shallow waters have
several available representations of distribution functions. These take the
form of a series either in the probability theory or in the nonlinear wave
theory. When waves are nonlinear with sharper peaks than throughs, the series
expression in Egq. 3.62 provides one representation for the probability density
for the wave heights., This expression is easy to apply, but assumes narrow-
banded waves of weak nonlinearity. Another representation of the wave
amplitudes (half the crest-to-trough height) is given by the integral repre-
sentation of Eq. 3.74. In this case, computation of the probability density
is more involved in terms of the joint probability of crests and troughs.
Both these distributions show that the density value is higher than Rayleigh
and occurs slightly ahead of the Rayleigh distribution.

The non-Gaussian probability theory for waves provided the distribution
functions represented by the Gram-Charlier series, Edgeworth series and
Longuet-Higgins series. These series representations can be extended to any
number of terms with added complexity for each additional term. However, the
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representation does not necessarily improve with added terms, but in fact may
deteriorate. For example, the first three terms of the Gram-Charlier series
best describes the non-Gaussian waves. Another limitation of this function is
that it produces negative density values at large negative wave troughs. The
Edgeworth and Longuet-Higgins series suffer from the same drawback. Moreover,
the skewness and flatness required by the Edgeworth series are difficult to
compute, For the Edgeworth series, approximations up to four terms are
sufficient, Another interesting feature of the series is the presence of a
second hump indicating a preferred range in the density function near the mean

wave amplitude.

For a strong nonlinear system, The Fokker-Planck equation may be applied
in which case the degree of nonlinearity may be left as arbitrary. For a
single dogree of freedom motion system, the equation may be written in terms
of a joint probability density function of displacement and velocity (Eq.
3.88). Once the numerical solution 1is known, the probability density of
displacement is obtained. For a practical multi degree of freedom system,
however, this procedure is quite involved and time consuming. Moreover, it

uses a white noise spectrum as the input for the excitation force,

The probability density functions for nonlinear third-order Stokes waves
in deep water as well as in finite water depth are known. For these waves,
the probability density values are always positive, The expressions are
obtained (Egs. 3.98 and 3.104) in a closed form in terms of nondimensional
surface elevation, This function shows that the non-Gaussian nature of the
distribution increases with the increasing value of a slope parameter., For
higher slope parameters, the maximum density values increase, and the
distribution becomes more and more skewed., For zero slope, it reduces to the

Gaussian distribution,

4.3 DISCUSSION OF NONLINEAR RESPONSE STATISTICS

There are basically three types of nonlinearities that are encountered in
the analysis and design of an offshore structure. These nonlinearities are
grouped according to the stages at which they appear: (1) nonlinear waves,

(2) nonlinear external forces and (3) nonlinear responses,
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The incident waves based on nonlinear wave theories are non-Gaussian.
Theories are available to describe the non-Gaussian characteristics of these
waves, some of which are included in Chapter 3 and discussed in Section 4.2,
However, they have found limited use thus far in the extreme value analysis.
While some attempts have been made in developing nonlinear wave spectra, these
have not found applications in the extreme value analysis.

The nonlinear external forces may appear in the form of drag forces
exerted on the structural member or may be due to the time varying wetted
height of structure. The general form for the nonlinear drag forces is
included in the Morison formula (including inertia and drag force) and its
several modifications, Some of these modifications discussed in Section 2 are
wave-plus-current effect, relative velocity model, etc. The nonlinear drift
force appears from the wetted-free surface and convective-inertia terms. The
exciting force for TLP springing has the same origin,

The nonlinear responses may arise from the responses at frequencies other
than the imposed wave frequencies (e.g., second-order frequencies, low
frequency drift, etc.) or nonlinear damping or restoring force in a dynamic
offshore structure system, The 1latter case arises from the material
properties or geometric nonlinearities of the components present in the
offshore structure system. Two of these, namely the catenary system and
flexible structures, are included in Section 2,

Some attempts have been made in examining the extreme value analysis in
all these areas of nonlinearities. Because of the complex nature of the
nonlinear problem, it may be solved numerically using time domain simulation
on a computer which is time-consuming and difficult to use in a design case,
The other approach in obtaining the probability distribution of the extreme
values has been to make simplified assumptions so that the solution may be
obtained in a closed-form or a semi-closed form expression., These approaches
are discussed in Chapter 3 and summarized by nonlinear categories in Table
4,2, As can be seen from the table, the sea surface has been invariably
chosen as Gaussian,

For the nonlinear drag force, a polynomial approximation developed by
Borgman is popular. The second term of the force spectral estimate gives rise
to a triple convolution integral of the velocity spectra. Similarly, the
third term may be shown to yield a quintic convolution integral and so on,
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Therefore, in principle, as many terms of the polynomial expression as desired
may be added. The complexity and computer time consumption for the evalution
of the integrals are enormous. In general, the inclusion of the second term
of the approximation provides a reasonable estimate wunless the drag
contribution is extremely high., An example in Fig. 3.25 shows that for a near
surface KC number of 94 based on the significant wave height and modal
frequency and the relative drag contribution parameter, K, of about 117, the
second term contributes about 16% of the first term and about 10% of the

maximum tctal force,

There 1is another effect of these higher order terms on offshore
structures (e.g., Jjackets) whose modal frequencies of vibration are at
frequencies higher than the wave frequency. Since these higher components
appear at higher harmonics of the load spectrum and since damping is small at
the natural frequency of the jacket structures, the responses (e.g., stress,
displacement, etc.,) are amplified at these frequencies. An example of this
phenomencn is shown in Fig, 3.26, The responses at the second harmonic are of

the same order of magnitudes as those at the first harmonic.

Besides the Gaussian assumption if the wave heights are assumed to follow
Rayleigh distribution (narrow band assumption) then the distribution of the
maximum forces for the Morison formula may be readily obtained from that of
the wave height [Borgman (1972)]. Another approach was taken by Tickell
{1977) in which force spectrum, instead, was assumed to be narrow banded. For
a wide-band spectrum, expressions are obtained for the limiting cases of all
drag or all inertia situation, These solutions are compared in Fig. 3.26 with
the corresponding numerical solution and are found to he acceptable in these
areas. A general numerical procedure was developed by Naess (1983) for the
prediction of extreme forces by the Morison formula. The expressions for the
expected extreme values are given for the compound inertia and drag terms and

are obtained in terms of the level up-crossing frequency.

For the wave-plus-current drag or the relative velocity drag, a similar
polynomial approximation as for the wave drag is possible, In these cases, a
force spectrum may be obtained including inertia and drag term of the modified
Morison equation. This was shown by Tung and Huang (1972-1973) and Grigoriu
(1984) for the wave-current drag and by Dunwoody and Vandiver (1981) for the

relative velocity drag. In the first case of waves, the current influences
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the incident wave as well through the kinematic interaction. Only linear
terms of the polynomial were used in these analyses. The extreme rate density
method was used by Moe and Crandall (1978) to obtain expression of extreme
forces in the presence of small current for both narrow-band and wide-band
Gaussian sea., In the latter case, the expressions for the extreme forces were
approximated by an asymptotic formulation, An exact form was solved

numerically by Grigoriu (1984) for the wave-plus-current drag.

The case of nonlinear damping in the differential equation of motion for
an offshore tructure has been considered in an approximate way by Brouwers
(1982) on the assumption that the damping is small and the motion response is
extremely narrow-banded in the area of the natural frequency of the
structure. In this case, any motion of consequence is from the resonance at
the natural frequency of the structure, If the excitation is considered to be
a white noise having nearly equal amount of energy at all frequencies over the
narrow band of interest, then a method of solution was developed by Roberts
(1977) based on the Markov envelope method. For a spectrum model used for
ocean waves this procedure is adaptable. Most ocean structures are inherently
designed to have natural periods away from the wave periods. In these cases,
the responses are generally some combination of resonance plus mass {or
stiffness) controlled response. When both of these separate responses are
significant, this method 1is not applicable. However, in cases where the
resonance response is much higher than the wave excited response, e€.g., the
oscillating surge drift motion of a ship or the high frequency springing load
on a TLP tendon, the method of Brouwers and Roberts is suitable. In a recent
work by Roberts (1987), the limitation of white noise spectrum was waived by
modifying the Markov process and using a generalized stochastic averaging.
The revised theory produced higher values of cumulative probability compared
to Rayleigh distribution as well as the earlier results. The new theory

seemed to match the experimental data on ship roll well,

The slow drift force is nonlinear being proportional to the square of the
wave height, For a narrow-band spectrum the initial distribution of the force
reduces to an exponential distribution function. However, Langley (1984)
obtained an expression for a wide-band spectrum which is markedly different

from the exponential distribution,
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In a recent important study by Pinkster and Wichers (1987) through
numerical and experimental simulation of slow drift oscillation, e.g., surge
motion, it was found that as long as the mooring system is linear, the low
frequency surge motion follows Gaussian distribution quite well. However, for
a nonlinear mooring characteristic, the deviation from the normal distribution
is large. The expressions for the probability density function feor the
second-order forces and motions have been given by Largley (1987). It is
obtained by contour integral and expressed in terms of eigenvalues of the
matrix equation of motion as a series expression, The number of terms which
is equal to the number of wave components in the irregular wave should be
large (about 200) according to Langley. The non-Gaussian characteristics of
the nonlinear force is given by high values of skewness {(~2) and kurtosis
(>5). However, the motion probability density of an example problem showed

that it is close to Gaussian,

The total second-order response including the first and second-order
terms has been investigated by Kato, et al. (1987), and an expression for the
pdf of this response is given, It is expressed as a series of Gamma functions
and eigenvalues. Numerical examples showed that the addition of linear term
makes the pdf of the response more skewed.
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5.0 CONSISTENT METHODOLOGY

The response of an offshore structure to random wave excitation is
usually computed in two distinct stages. First, the excitation force on the
structure due to the wave kinematics around the structure is computed, Then
the responses of the structure such as displacements, stresses, etc., due to
the application of this excitation force are obtained. If the responces are
linear with respect to the wave amplitudes, then the relationship between tne
force and the wave and that between the response and the rvorce must be
Tinear. The nonlinearities in this analysis may enrter in either one of these
two steps. The excitation may be nonlinear from higher order effects in the
wave loading, e.qg., the drag force. the drift force, etc. On the other hand,
the responses may be nonlinear even if forces are linear due to nonlinear

damping or restoring force etc.

[t is clear from the discussion in the previous sections that one
concistent methodology for all types of nonlinearities that appear in
predicting the responses of an offshore structure cannot be prescribed. In
fact most of the probabilistic methods available today that are used in
predicting extreme values of a nonlinear system are based on simplified
assumptions that are dependent wupon the type and <characteristic of
nonlinearity.

Let us discuss the type of nonlinear problems in offshore applications
that have been dealt with using the extreme value analysis. The most common
nonlinearity that appears in the marine structure design is in the calculation
of the exciting forces., This iakes the form of the nonlinear drag force,
€.g., in the Morison formula. There are several variations of the Morison
formuta in terms of the presence of current or structure motion. Some of
these areas are also investigated in predicting extreme response values.
Other areas include nonlinear damping and slow drift oscillation.

In all these formulations, the sea has been invariably assumed to be zero
mean Gaussian. If the sea surface is high which usually produces the extreme
responses then the crests are higher than the troughs and sea surface in all
likelihood will not have a zero mean nor will it follow a Gaussian
distribution. In these cases, the non-Gaussian properties of the waves should

be known. The non-Gaussian distribution is usually represented in a series
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form b2sed on a nonlinear wave theory, e.g., Stokes' higher order theory or
probability theory, e.g., Gram-Charlier series. These theories show that the
waves generally have a non-zero negative mean and higher skewed density than
Gaussian, The distribution of wave heights similarly have higher density than
Rayleigh. However, the effect of non-Gaussian sea on a nonlinear response is
genciraily not known. On the other hand, probability distrioution of several
specific nonlinear non-Gaussian responses of marine structures has been
presented.

Because of the above limitations and various simplified approximations
involved in nonlinear extreme value analysis a cookbook method for an engineer
to follow is not possible at this stage of the development. The state-of-the-
art is such that various simplified methods may be recommended. None of these
techniques may be applicable to a particular problem in which case several
methods should be tried to find the differences in the results. Then an
engineering judgment should be wused 1in choosing the appropriate extreme

values,

5.1 EXTREME VALUE PREDICTION FOR NONLINEAR SYSTEMS

A simple flow chart for the evaluation of the extreme responses of a
marine structure is shown in Table 5.1, Depending on the type of the extreme
value that is sought for in the design, the computation may be stopped at the
short-term level or continued to obtain long-term statistics or extreme and a
fatigue analysis. The process is similar whether the response is a linear or
a nonlinear function of the environmental input variable, which is the waves

in our case.

For a linear system, the rms value of the response defines the short-term
statistics of the response. This may then be extended directly to the long-
term statistics if the long-term probability of the short-term waves is
known., For a nonlinear system, the rms value of the response is generally
only ore of the parameters that determines the response statistics. Other
statistical parameters are needed to complete the description of the short-
term extremes of the response. There“ore, in the long-term response analysis
the appropriate statistical dependence of the short-term response must be
included along with the long term wave statistics.
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TABLE 5.1
FLOW CHART FOR EXTREME RESPONSE VALUE ANALYSIS

STRUCTURE SHORT-TERM
RESPONSE WAVE — -
FOKMULA | PARAMETERS
NONL INEAR WAVE SPECTRUM
RESPONSE MODEL AND
STATISTICAL
LA PARAMETERS
~— K }
RESPONSE WAVE SCATTER
SPECTRUM DIAGRAM
AND SHORT TERM T
STATISTICS l
Y_
¥ ¥ ¥
LONG-TERM STATISTICS OF FATIGUE
RMS RESPONSE LONG-TERM ANALYSIS
RESPONSE




TABLE 5.2
RANGE OF APPLICABILITY OF
LINEAR APPROXIMATION OF COMMON NONLINEAR TERMS

NONLINEAR TERM PARAMETER VELOCITY

Wave Drag u < 2¢q,
Wave Current Drag y = 0.1 v < 20y
vy = 0.5 v < 2.50

y = 1.0 10 < v < 3°v

Relative Velocity Drag oV/ou = 0.1 v < 20y
= 0,2 v < 20,

0.3 v < 2°v




Different approximation methods that are available and are described in
Chapters 3 and 4 are summarized here in a logical order. In the extreme value
analysis for the design of a marine structure, the random waves are
customarily assumed to have a Gaussian distribution. A suitable spectrum
model, e.g., P-M, JONSWAP, etc., is chosen as the wave model to represent the
seastates for a long-term prediction depending on the sea severity.
Sometimes, more than one spectrum model is suitable. For example, the lower
waves may follow a P-M model while the JONSWAP model may be suitable for the
higher seastates. Once the wave environmental model 1is chosen, the next step
in the prediction is computation of the environmental forces on the offshore

structure,

If the forces are linear, then the forces may be obtained in the form of
a force spectrum, For a linearized approximation of a nonlinear system a
similar approach may be taken, One of the most common forms of nonlinear
forces is given by the Morison equation representing a drag and an inertia
force, The values of the velocity for which the linear approximation may be
used with reasonable accuracy have been given in Table 5.2, If current is
present with waves, the validity of a linear approximation is measured in
terms of the strength of the current as well, These limiting values are also
given in the table,

Higher order terms in the force spectrum ma, be estimated based on the
series expansion of the nonlinear terms. These higher terms in the estimate
are time-consuming to compute but may become significant if the nonlinearity
of the force term is large. The extreme values are difficult to obtain from
these spectrum extimates without knowing the distribution of the force maxima
which is not generally Rayleigh.

However, the additional terms in the spectrum produce peaks 1in the
spectrum in the higher frequency range which may coincide with the natural
frequency of vibration of the structure under investigation. In this case, if
the structural damping is small, the response may be peaked at this frequency
leading to a narrow band spectrum. This response spectrum may then be treated
as Rayleigh distributed so that the response extremes may be easily

determined.
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If the force spectrum is narrow banded, then the distribution of the
force extremes may be given in terms of inertia or drag dominance. For the
inertia-dominated region, the force maxima are distributed according to the
Rayleigh distribution, For the drag-dominated area, the distribution is
exponential.

For a wide-band wave force model, similar separate expressions for the
drag-dominated and inertia-dominated areas are known but now in terms of an
additional parameter, e. These expressions are, however, only valid for the
limiting values of the drag-inertia parameter, K, namely, K = 0 and K » «,
The comparison between the two cases shows that the narrow-band assumption
overpredicts for the same probability level at both the 1imiting values of K.

The extreme value analysis for a wide-band spectrum was also provided in
terms of the expected rate of occurrence of force maxima. These expressions
use the appropriate frequencies corresponding to kinematics involved in the
process. The expected number of peaks per time unit are obtained from these
expressions by integration,

Similar analysis have been made for wave-current force. The latter was
derived on the assumption of large force. Separate expressions for narrow-
band and wide-band process have been given. In this case the modified form of
the Morison equation is used. However, current is assumed small in the sense
that only the terms in the first order in U/o, are retained. Thus, the
expressions are valid for current of the order of 10-20% of the rms water
particle velocity.

The expression for the expected extreme value for the component of the
drag force in the presence of a finite current is shown in Eq. 3.317. The
extreme value depends on a time interval, Tg.

[f a dynamic system is nonlinearly damped, the simplest solution for the
extreme responses is to derive the solution of an equivalent linearly damped
system, The damping is particularly important near the natural frequency.
Moreover, if the damping 1is small then the response may be treated as an
extremely narrow-band process. Then, the input spectrum over this area of
response may be treated as a white noise process for which the solution is
known, The Markov process is a powerful tool for these derivations and a

generalized method has been derived to waive the requirement of white noise,
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5.2 A CONSISTENT LINEARIZATION METHOD

A common technique of handling these problems 1is a linearization
technique in which the nonlinear problem is linearized by one of many means,
e.g., the Fourier averaging, least square error technique, Taylor series
expansion, etc.

Table 4,2 1includes the polynomial approximations of various forms of
nonlinear terms that appear in the structure response calculations. These may

be generalized in the following way. Let
f = f{x) (5.1)

be a nonlirear function of x. Let x be a variable that follows a zero mean
normal (Gaussian) probability law. Thus, x could be such quantities as the
wave profile, velocity profiie, relative velocity profile, etc. The problem
is to compute a polynomial approximation of f(x) given by

f(x) =7 C x (5.2)

such that the gquantity

o

0= 1 0f(0) -z ex™
- n v 2

2
exp [- x° /20,°] dx (5.3)
o]
X
is minimized, The last part of the integrand is the Gaussian formulation,
The values of C, (n =1, 2, . . .) may be obtained by differentiating Q with
respect to C, and setting the result equal to zero, Thus, depending on the
number of terms desired in the polynomial, an equal number of equations in the
unknowns C, may be obtained. The values of C, are then obtained by setting up

a matrix equation and its inversion. For example if
f(x) = |xlx (5.4)

and only one term in the polynomial (linearized) is desired then

T
Cl = v : (Ix (5.5)
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Tiis is then a generalized method that can be used for any nonlinear function
f{x) as long as the function f(x) is explicitly known as a function of x where
x is an independent variable. Many of the nonlinear response terms for a
marine structure have already been worked out and the results are tabulated in
Table 4.1.

Once tne problem is linearized then the usual procedure of a short-term
Gaussian process is applicable. For example, in the case of wave drag

f{u) = kplulu (5.6)

Once the right hand side is linearized through the formulaticn in Eq. 5.3, we
have

flu) =k /2

D o U (5.7)

t

Since u(t) 1is assumed to follow Gaussian distribution with a zero mean so
would the force fl{u)., Thus, the amplitudes of force, f, w11l follow Rayleigh
distribution for which extreme values may be predicted. This linearization

will apply only for small nonlinearity.

The adequacy of assuming Gaussian response statistics of a linearized
nonlinear problen depends on the type of nonlinearity and the sea severity.
The ranges of the values of u for which this linearization is reasonably valid
alonyg with all the other nonlinear terms included in Table 4.1 are summarized

for convenience in Table 5,1,

5.3 RESPONSE SPECTRUM COMPUTATION

I[n some cases of nonlinearity, more exact solution is possible by
spectral nr stochastic averaging technique, This may provide nonlinear
relationsnic petween the wave spectrum and force spectrum depending on the
area af nonlinearity. In a few cases, a probabilistic description of the
response 15 also possible, However, because of simplification of the

structure, etc, in these analyses, the practical application is quite limited.

For a linear system the response may be related to the waves by a

relationship of the type
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x(t) = H(w)n(t) (5.8)

where x = response function, n = wave profile, t = time, and H = a function of
the frequency, w., This relationship can be directly converted from the time
to the frequency domain through the autocovariance method. Thus, taking the
tagged product of both sides and integrating

[ x(t) x(t + 1) dt = H2(w) | n(t)n(t + 1) dt (5.9)
0 0

or

RX(T) = H (w) Rn(T) (5.10)

Then the Fourier transform of both sides provides the wellknown relationship
between the wave spectrum and the response spectrum for a linear system

[ R(7) e “Tdr = Ho(w) [ R (1) e'“T dr (5.11)
or
w) S (w) (5.12)

Here, H(w) is called the transfer function between the wave profile and the
response, Since the wave profile is assumed to follow the Gaussian distri-
bution and wave height, the Rayleigh distribution and since the transformation
is linear, the response amplitudes also follow the Rayleigh distribution from
which the extreme values are easy to determine.

This approach may be extended to nonlinear systems as well, if the
nonlinear functional relationship is expressed in a polynomial form as shown
in the previous section., Let us take the example of drag force related to the
water particle velocity

f = kplulu (5.13)
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In this case, after the 1utocorrelation function for the force is
written, the right hand side is expanded in a series fc-m the first three
terms of which take tne form

R(1) = H, () R (1) + H 30y F HL(F) R2(0) + 0 s (5.14)

1 u Z(f) Ru

3 u

8/nkplo,2

where Hl(f) us

HalF) = & kp?/(3 mo,?) and Hs(f) = kp?/(15m0,").

By taking the Fourier transform of both sides, the drag force spectrum
may be related to the velocity spectrum, Note that the powers of the
autocorrelation function appear in the frequency domain as the convolution
integral, Thus,

) (1) eiquT = [ [ S{w) S(w' - «w) S(w - w') do' du" (5.15)

o Y 00
This integral s easy to evaluate numerically even though it 1is time
consuming, Thus, in principle as many terms in the series in Eq. 5.14 may be
included in the evaluation of Sf(w) even though in the practical sense
anything beyond the second term may be prohibitive in terms of execution time

requirements of a computer,

Moreover, even though the response spectrum is known and its significant
value may be calculated, the computation of the extreme value is not
straightforward. Since the relationship is nonlinear the force amplitudes do
not necessarily tollow Rayleigh distribution even though the velocity
amplitudes do. Therefore, it is difficult to predict the extreme values for
the force.

The importance of this analysis, however, may be stated in the following
way. Llet us examine Eq. 5.14. If the first term on the right hand side
produces the first harmonic frequency of the force, the second term will have
a peak at the third harmonic, the third term at the fifth harmonic and so
on. These higher order terms will generally be reduced in magnitude in
succession, However, many fixed structures have natural frequencies of
vibrational modes at frequencies much higher than the wave frequency range,.
One of tnese vibrational modes may coincide with this higher frequency in the
force spectrum in which case an amplification of the response, e.g., stresses,

etc, may be generated., Moreover, if the structural and hydrodynamic damping
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are small in *his region the response, e.g., stress or displacement, will
appear as a narrow-band spectrum in this frequency range. The response then
may follow Rayleigh distribution even if the force does not. The extreme
values may be deri.2. for the responses due to this nonlinear excitation,

5.4 RESPO.T" PRCBABILITY DENSITY FUNCTION

PR

Con<i. 'r two random processes, x(t) and y(t), where x(t) is an excitation
and y(t) i~ the corresponding response. If x(t) is Gaussian while y(t) is not
there 1is -~.rong indication that the physical system is nonlinear. Unlike
linear systens, no general methodology exists for nonlinear system analysis.

For a class of nonlinear systems, however, a consistent methcd exists for
deriving the initia1 distribution ot the response if the excitation is assumed
Gaussian, While the initial distr-bution of the response does not provide
information regarding the extreme values, it may give some insight into the
nonlinear nature of the response and a degree of departure from the linear
system. Thus, it may help provide and evaluate the validity of an approximate
method of the extreme value analysis of the nonlinear system, The following

analysis is according to Bendat (1985).

Let us consider that the excitation function, x(t), is a stationary
ergodic random process with zero mean value such that at any time, t, the

random variable x = x{(t) has the first-order Gaussian probability density
function
p(x) = 1 exp | —137 ) (5.16)
/ - _ - / L]
N v 27 20x

where the mean value, u,, and the variance, o, 0f x are given by

= E[x] =0 (5.17)
_oer 2

= F[x"] (5.18)

For the pair of random variables xy = x(t) and xp = x(t + 1), the joint
prohahility density function is given by the second-order Gaussian form
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1 -1 2 2
p(xysx,) = 5 [ exp ——p — [ x] = 20 x) x5 + x5 ]}
2n o, - 2a, (1 -%) (5.19)
where p is the correlation coefficient between Xy and X
Elx, ,x,) Elx, x,]
- _ 1°72 _ 172
P = Py = - - = 042 (5,20)
3 1] 8 2] X
The auto correlation function
Rxx(r) = E[x(t) x(t + 1)] = E[x1 x2] (5.21)
(0) = E[x(t) x(t)] = E(x?] = E[x%] = o (5.22)
XX 1 2 X *
Hence
R . (1) R (1)
~ _ XX _ XX
p(1) = DXX(T) = W = —;—2-- (5.23)
X

The expected value of the response and its moments can be obtained from g(x)
and p(x) as follows:

[ -]

E(y) = E[g9(x)] = {m g(x) p(x) dx (5.24)
E(y") = E[g"(x)] = {: g"(x) p(x) dx (5.25)
o, = EYD - (ELyD)? (5.26)
If the response y = g(x) is a zero memory nonlinear system that is

single-valued and one-to-one, the response probability density function pz(y)
for the response y(t) is given by

Pyly) = (5.27)

expressed in terms of y. If each value of y = g(x) corresponds to n values of
x which are equally likely, then

pz()’) = X (5.28)
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Whenever p(x) is Gaussian and g(x) is nonlinear, the resulting p,(y) will be
non-Gaussian,

Example: Two Slope Systems

A nonlinear mooring line may be approximated, sometimes, by two
straight lines of two different slopes (often within the range of
its application in an offshore system)., Let us consider the example
of the nonlinear two slope system given by

X for x < A
A+ b(x - A) x > A

(]

y = g(x)

it

where g(x) is an odd function, g(x) = g(-x). Then

%% =1 for |x| > A

Note that (dy/dx) is discontinuous at |x| = A.

The response probability density function is obtained from

poly) = plx) = ply) for y < A (5.29)
Lo sty - /D) ) y > A (5.30)
= 5 { pl-A + Ly + AI/b] | y < -A (5.31)

Tf it is assumed that the excitation follows the normal (Gaussian)
distribution with unit variance (oy = 1)

exp (-x2/2) (5.32)

then the response probability density function is given by
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1 2
p,(y) = exp (-y~/2) yl <A (5.33)
2 s |yl
\ 2
o
2
b v 2n

It is clear from the above expressions (Egqs. 5.33-5.35) that there is a
discontinuity of the response density function at y = A, Depending on the
case of clipping for 0 < b < 1 or hardening for b > 1, the quantity py(A+) is
either greater than or less than py(A-).

Example: Square-Law System

The second-order wave force, e,g., the wave drift force follows a
square law with respect to the waves. Let us consider a response

Then
dy . g'(x) =2x and x =1ty (5.36)
The response probability density function
2 p(x) _ ‘/—) f
= = ory>0 5.37
Po(¥) = 5T ﬂ——i—n y (5.37)

with po(y) = 0 for y > 0 and pp(0) = =, If p(x) has a Gaussian distribution,
then

p( /Y ) = —L—exp (-y/20,%) for y > 0 (5.38)
Hence

2) fory >0 (5.39)
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This is the form of an exponential distribution, Note that

2n

Ey"1 = E0x®"1=1,3,5 ... (2n-1) o (5.40)
b, = E) = ol (5.41)

Ry (0) = Ely21 =3 0" (5.42)
oyz = 20" (5.43)

Example: Cubic System

The load-elongation characteristics of a mooring system may often
expressed by the cubic law. A nonlinear cubic system is given by

Hence
g¥-= 3x2 and  x = yl/3 (5.44)

Then the response probability density function is given by

1/3
p (y) =R - R 7) (5.45)
2 I3Q?T' 3 y2/3
Assuming a Gaussian distribution for p(x)
1 2/3,,: 2
po{y) = exp (-y~'°/20,%) (5.46)
2 30xy2/3/-—2-77 X

In this case, pp(-y) = pp(y) and py(0) approaches infinity. Note that

E[y] = E[x3] = 0 (5.47)

=
it

6

—_—
o
~—

1}

= £[y%) = E0x®1 = 15 o (5.48)
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Example: Square-Law System with Sign
The wave drag force is expressed as the square law with sign in

terms of the water particle velocity. A nonlinear square-law system
with sign is defined as

y = g(x) = |x|x

i.e.

y = x2 for x < O
= -x? for x < 0

Then
x=+/y for y > 0
= -V oy for y < 0

Also
%%_= g'(x) = 2x for x > 0
= -2% x <0

Hence, the response probability density function

p( /¥ )
(y) = x) - b( for y > 0
P2 Xt 2 vy

= Ei—ézég—l for y < 0
2./ -y

Then po(y) = pp(-y) and pp(0) tends to infinity. Also

b, = Ely] = EL|x|x] = 0 (5.49)
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Ryy (0) = E(y?] = Elx"] = 30 * (5.50)

The above theory provides a simple method in obtaining the initial
distribution of a nonlinear system subjected to Gaussian excitation. As
mentioned before, an initial distribution (distribution of the profile values)
does not indicate the extreme values for the system, But it may aid in
examining the nonlinear system against any approximation used in deriving the
extreme value of the nonlinear system.

5.5 RESPONSE EXTREMES BY ORDER STATISTICS

The extreme value of the maxima of a Gaussian (linear) response may be
derived by applying order statistics. The extreme value defined in this
respect is the largest value of the maxima that will occur in N observations
in a short interval of time (of the order of a few hours).

If the value of the bandwidth parameter, ¢, for a random variable is
known, then the probability density function of the variable may be
estimated. For example, if the spectrum of the response, e.q., the force
spectrum derived in a previous sectinn, is known, the bandwidth parameter, ¢,
may be estimated from its moments. The distribution function for the broad
band spectrum (varying between truncated normal, ¢ = 1, and Rayleigh, ¢ = Q)
is then known from Eq. 3.67.

For a random sample, X1s X025 o o o5 XN of size N which are the observed
maxima of a random process, the samples may be ordered in ascending values,
T]s 52s « o« »5 Gy Where gy is the largest. Each one of Z will have its own
probability density function different from that of x; (Eq. 3.63). For
example, for a given probability level, a, such that

p[CN > CN] = a (5.52)
we can obtain the relationship

[Pg )V =1 - o (5.53)
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where P(QN) is given by Eq. 3.67 for Y& = EN' The problem then is to

compute oy for a given value of a. This is a difficult task from an equation
of the type of Eq. 5.53.

However, considerable simplification may be made if the following two
assumptions are made:

o o is small being of the order of 0.1 or less
o N is large
e ¢ <0,9

A1l these assumptions are reasonable from practical standpoint since most
response spectra will lie in the range of 0 < € < 0.9 and the extreme values
will generally be sought from large number of observations with the cumulative
probability of 99% or more.

Under the above assumptions the error functions in Eq. 3.057 reduce to
either zero or one and the extreme value, on» is derived as

‘=[22n( /1—-—67'2_N_)]1/2

N a
1+/1 - €2

Note that Eq. 5.54 is a "peak factor" applicable to a Gaussian process. Note

(5.54)

also that N is normalized so that the extreme value of the amplitude of the

response (as a random process) is obtained by multiplying this value by v My

The number of observations, N, is difficult to work with, but it can be
related directly to the time length, Tp. For practical purposes, it is more
meaningful to express the extreme value as a function of Tp.

R T ['m
iy = [ 22n {_(’2%)—01— ﬁcz-)'} ]1/2 (5.55)

where Tp is given in seconds.

Ochi (1973) worked out examples for extreme values from data from a wave
basin. The examples include various random waves generated in the tank and
the recorded pitching motion of a ship model in random seas. The results are
summarized in Table 5,3, The predicted values are based on the moments of the
spectrum computed from the recorded data. The most probable extreme
value, 7&, corresponds to the value at which the probability density is
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TABLE 5.4
SHORT AND LONG TERM MOTION RESPONSE EXTREMES

COMBINED WAVE

WAVE FREQUENCY AND LOW
SWAY ONLY FREQUENCY SwWAY
Short term most probable
maximum in 10 year seastate 9.1m 11.5m

Long term maximum with a 10%
probability of being exceeded
at least once in 1 year 9.8m 12, 9m




maximum, The extreme values are obtained for three different probability of
exceedance values of « = 0.1, 0.05 and 0.01.

The agreement between the predicted most probable extreme values and the
observed extreme values is satisfactory., But the probability of exceeding
this value is quite high (about 0.63 for € = 0 ). Therefore, for design
purposes the extreme values corresponding to o = 0.01 or so are more
appropriate, These values are about 25-40% higher than the most probable
values,

5.6 LONG-TERM RESPONSE PREDICTIONS FOR NONLINEAR SYSTEMS

There 1is no universally applicable theory for describing the response
behavior of general nonlinear systems either spectrally in the frequency
domain or probabilistically in the amplitude domain, Under certain
conditions, however, solutions may be obtained in a few cases., Two such cases
discussed earlier are second-order drift force along with associated low
frequency motion and Morison type force. The short- and long-term preuictions
of two such examples are provided here [Inglis, et al. (1985)].

EXAMPLE 1 - LOW FREQUENCY MOTION RESPONSE

It has been shown [Pinkster (1980)] that the time-domain description of
the second-order force on a floating structure due to a wave group having
frequency components, w; (i =1, 2, . . . N) is given by

N N
Fz(t) = }'51 J’fl 5§ ¢ P‘ij cos {(w]. - wj)t + (Ei - ej) +
N N
£ L gy C: Q.. sin {(w; - w,)t + (e; - €.)} +
jo1 go1 b i i
high frequency terms (5.55)

where Pij and Qij are the in-phase and out-of-phase components of the time
independent transfer functions. The mean second-order force is found by
setting w; = w5

N2
Fé (t) = £ ¢ Py = ) (5.56)

1




which may be generated as

Fz(t) =2 [ S(u) Plw,0) dw (5.57)
0

2

where S(w) do = %-C and ¢z is the wave amplitude.

The spectral density of the low frequency components of the force is
computed from the square of the transfer function as

(w) = 8 fo S{w + w') S(w') T

2

S (w+ ', w') do' (5.58)

F

where
2w+ o) = P2lu+ u'ye') + Q%(u + o',u') (5.59)

and T = amplitude of the quadratic transfer function.

The motion response spectrum may be obtained from the force spectrum if
the system is considered to be a single degree of freedom system havirg linear
damping. For a catenary moored system, this approximation usually provides a
good estimate of the motion. Assuming that the system is lightly damped, as
the case is for a low frequency oscillation, the motion response spectrum
becomes quite narrow-banded acting as an effective filter. Thus, even though
the force spectrum follows a non-Gaussian process, force being proportional to
the square of the wave amplitude, the probability distribution of the resonant
response is almost independent of the probability distribution of the
excitation. Thus, for a linear transfer function between force and motion,
the motion response can be well represented by a Gaussian process. The motion
response spectrum describes the short term probability of the low frequency
motion response. If the high frequency and the low frequency responses are
assumed to be statistically independent, the two response spectra can be added
together., Once the short-term response is known it can be combined with the
wave scatter diagram to generate the long-term response,

The short-term estimates are made in terms of a storm with a 10 year
return period having a significant wave height, H, = 14.2m and a mean zero
crossing period, T, = 13,6 sec. The long-term response may be est.nated for a
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return period of 10 years. On the other hand, the maximum response may bhe
determined which is experienced (at least) once during a given period (say,
1 year) with a given probability level,

The cumulative probability of a response exceeding a particular value, M,
is Q(M)., Then the probability of not exceeding this value is 1 - Q(M).
Assuming a period of L years (e.g., the lifetime of the structure) and the
number of peaks, N, in a year, the probability of not exceeding the prescribed
value M in L years is (1 - Q(M))N*L. If it is assumed that this value M will
be exceeded once in L years, the probability 0;(M) is given by

M =1 - (1 - om)Nt (5.60)

An acceptable probability of exceeding the design value of M is chosen as
10%., The short-term most probable vaiue for a 10 year storm and the long term
response for a 10% probability of being exceeded once a year are shown in
Table 5.4.

In the above example, the difference between the short- and long-term
response extremes is quite small. However, the long-term extreme is obtained
on the basis of exceedance in one year as opposed to the 10 year storm for the

short-term response.

EXAMPLE 2 - EXTREME FORCE BY MORISON FORMULA

The Morison formula describing force on a vertical cylindrical member of
an offshore structure is given by

f =k, u o+ ky Tulu (5.61)

where ky = Cy o "D/4, kp = 1/2 G v D, u = horizontal water particle velocity
and U = horizontal acceleration, In order to derive a fonrce spectrum, Eq.

5.61 is statistically linearized as

f = kM G + /877 kD o u (5,62)




where o, = standard deviation of the water pirticle velocity. Thus, once the

seastate is known, o, is known and force is strictly linear with the wave

u
height. A transfer function for force may be determined which, however, will

depend on the seastate under consideration,

For a short-term response prediction, the transfer function can be used
directly without any difficulty similar to any linear system. However, for a
long-term prediction method, the transfer function has to be modified with
each seastate. An example of the difference in the transfer function is shown
in Fig. 5.1. In order to overcome this problem, a further approximation is
made by choosing one seastate to obtain the transfer function which is then
used to derive o¢ for all seastates,

Using the narrow band solution, the probability density function of the
normalized force amplitude, T, is given by

32
3 2 A N -
p(F) = (7 K+ 1) Texp ( - —7) for T < h
(5.63)
R O e L T DA _
p(f) = R exp { - 7 (F-— 1)) forFon
(5.64)
where
]
h = (5.65)
K@ 2 172
and fO
F o= 2 (5.66)
of

Thus, the peak force amplitude distribution depends on of and K,

The standard deviation for the force using the Morison equation is
o (5.67)

whereas the linear approximation gives
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TABLE 5.5
EXTREME VALUE FORCES ACTING ON 1 m
ELEMENT OF PILE AT 13 m BELOW SEA LEVEL
BY MORISON FORMULA

PEAK
FORCE PROBABILITY
CALCULATIONS DISTRIBUTION MOST PROBABLE EXTREME FORCE (kN)
Short Term Gaussian Response 3.7 x RMS = 5.7
10 Year
Sea-State Non-Gaussian Response 7.7 x RMS = 11.9
Hg = 14.2 m, K=1.11
T, = 13.6 sec.
Long Term Linearization in each Non-Gaussian 14,3
sea state K= 0.00579 * H, * T,
Single transfer function Non-Gaussian 12.8
linearization in 1l-year K =0,00579 * Hg * T,
sea state
Single transfer function Non-Gaussian 14.4
linearized in 10 year K=0,00579 * Hg * T,
sea state
Single transfer function Non-Gaussian 16.0
lTinearized in 100 year K =0,00578 * Hg * T,
sea state
Linearization in each Gaussian 7.0

sea state (Rice distribution)




2.8 (5.68)

Then the error in the estimate of K given by the ratio of drag to inertia
force components is of the order of 8%. Note that K is a function of Hge In
the present example the dependence of X to T, is found to be linear in T,
given by

K = Ky T, Hg (5.69)

where Ko = 0.00579, These formulations were used to predict long-term extreme
force. The results are given in Table 5.5. In the example, both the
nonlinear peak distribution for a narrow-band non-Gaussian process and the
linear exponential (Rice) distribution for a general wide-band Gaussian
process have been used, The short-term prediction is based on a 10 year storm
while the long-term prediction assumed a 10% probability of exceeding once in
a year. The factors for the extremes for the short-term prediction are used
as 7.7 times the standard deviation for the non-Gaussian process and 3.7 times
the standard deviation for the Gaussian process [Brouwers and Verbeek
(1983)1. From the table it is seen the non-Gaussian response more than
doubles the extreme value prediction. The long-term predictions in this case
are higher than the short-term ones by about 20%.
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6.0 CONCLUDING REMARKS

The nonlinear analysis for various recponses of an offshore structure and
the extreme value prediction of those responses are reviewed in this report.
Different classes of offshore structures are introduced and the applicability
of the nonlinear systems to these structures 1is discussed wherever
appropriate, Because of the complexity of determining the probabilistic
properties of a general class of nonlinear responses, only approximate
solutions in the extreme value analysis 1is possible., Various methods of
approximating nonlinear systems and the Timitations in their application in an
offshore structure design are discussed. Nonlinear problems leading to the
non-Gaussian distribution and the extent of their departure from a Gaussian
distribution are investigated. Based on these solutions, techniques of
predicting extreme values of both linear and nonlinear responses for marine
structures that are consistent within the particular methods are given,

The discussions included in this report warrant the following
conclusions:

1, For a nonlinear system, the response parameter is nonlinearly
related to the wave elevation through nonlinear elements in the wave
force excitation or in the structure's system characteristics. In
either case, the response becomes non-Gaussian, No consistent
method exists for such a system, In a few special cases, the
solutions may be found by approximations or modification of the
analysis procedure. Sometimes the response characteristics of the
system act as a linear filter, e.g., for a lightly damped system
even when force excitation is nonlinear in wave elevation. Examples
of such possibie systems is the finely-tuned springing of a TLP
tendon, Thus, even if force probability distribution 1is non-
Gaussian the response is nearly Gaussian,

2. The structural response time history for a single degree of freedom
system is similar between uncoupled, coupled and linearized drag
forces, In the latter case, the error is about 20% for large
H/D > 20, For random waves, the mean square values are similar, but
the linearized method produces considerably lower (60% at HS/D > 20)
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extreme values of response. The nonlinear drag also alters the
spectral distribution of wave forces providing an increased energy
at higher frequencies. This may increase the resonant response
compared to a linearized analysis.

The expected extreme responses of members of offshore structures by
the nonlinear drag forces exceed significantly those predicted by
equivalent linear methods, particularly when drag forces are
predominart, Nonlinear effects can be expected to be important in
fatigue damage computed when for a significant portion of the life
of the structure the drag forces constitute a significant part of
the total force. Typical exampie of such members are the small
diameter members of jacket structures in water near the free
surface, conductors and risers in areas of severe wave action, For
extreme value analysis, the effect of drag nonlinearity may be
important even for larger members,

If a linearized method is applied in a complex numerical analysis,
the effect of the nonlinear probability distribution not taken into
account in the analysis should be corrected., While this is not an
easy task, in a limited number of cases, a reasonable correction
factor may be achieved by the comparison of results presented in the
report. For example, Fig. 3.47 shows the amount of deviation in the
probability of exceedance of a low-frequency surge motion from
Gaussian., Care should be exercised in using these data, however, as
they are limited.

The surge periods of a large compliant structure (for example,
catenary anchored) is very long, of the order of one minute. The
second-order wave forces based on difference frequencies of
component waves excite the structure at its natural frequency giving
rise tc large anchor 1loads. On the other hand, a compliant
structure held by taut cables, such as a tension leg platform has a
high frequency natural period in the vertical direction. Second-
order wave forces at the sum frequencies of component waves can
resonate the structure in the vertical direction introducing large
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6.

tendon loads which 1is important consideration for fatigue damage
evaluation, This phenomenon, known as springing 1load, is
proportional to the square of wave amplitude and, thus, has similar
characteristics as the wave drift load. The response probability is
expected to be similar in this case.

The deterministic design wave and the probabilistic short-term
procedures fail to adequately predict consistent maximum responses
in a structure's lifetime for which a long-term statistical
distribution method is far more appropriate. Wave data for this
method, however, are rather lacking in many sites particularly on a
long term basis. In this case, a so-called '1000 year wave scatter
diagram' may be extrapolated by the method presented her :in. This
provides a rational and consistent criterion of acceptability in the
form of a uniform chance that a given response level is exceeded in
the lifetime of the structure as opposed to the non-uniformity
present in the first two methods.

For short-term as well as long term prediction, a family of wave
spectra for a specified seastate has been advocated, Since the
shape of the energy density spectrum varies considerably based on
the environmental input, even for a given energy level (or,
equivalently, given significant wave height), this method is more
reliable in predicting extreme responses. For a two-parameter
family, the wave height and the wave period were found to follow
log-normal probability law (for P < 0.99). Since the responses are
computed for a series of spectra, the upper and lower bounds as well
as standard deviation of short-term responses may be obtained.

For estimating short-term extreme values of the responses for design
consideration, various factors such as operation (or exposure) time,
frequency of encounter with seas, speed (in the case of a ship), and
risk parameter should be considered. In the long-term response
prediction, factors such as seas of various severities, a variety of
wave spectral shapes, various speeds (in case of a moving vehicle),
various headings to waves, and the expected number of cycles of the
response should be included in the prediction routine,
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9.

For non-Gaussian waves, a popular method of obtaining the
distribution function for the time history of waves is to use a
series representation in the probability theory. A common series
available is the Gram-Charlier series. Several probability density
functions for nonlinear waves are known. The non-Gaussian nature of
nonlinear responses generally based on linear waves is characterized
by the eigenvalue-eigenvector approach, This is particularly true
for quadratic and linear plus quadratic response, Examples of such
responses are slow drift oscillations, drift force, springing force,
etc. Several probability density functions are derived in series
forms by this method. Once the initial distribution is known,

extreme values may be predicted from it.
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7.0 RECOMMENDATION FOR FUTURE WORKS

It is clear that no systematic procedure exists to handle nonlinear
problems in predicting extreme value responses by probabilistic means either
long term or short term. Only a few special cases may be treated at this time
and those too only after certain linearization or other approximations, Based
on the present review the following recommendations are made to further the
state-of-the-art of the nonlinear extreme value analysis.

1. Various energy spectral models to describe random ocean waves are
known, They do an adequate job of describing the ocean waves at a
particular site for a given set of wave statistical parameters,
i.e., a suitable form of the spectral model may be chosen based on
the statistical parameters that match the energy distribution
reasonably well, However, the knowledge of the upper tail of the
spectrum at the high frequency end is less confident and often
poor. Since the extreme values (including higher moments of spectra
for such derivation) are highly dependent on this upper tail, care
must be taken to describe them accurately. Therefore, more research
work is needed to study this area in terms of reliable field data in
the area and the corresponding mathematical description,

2. Most of the probability methods start with the assumption of
Gaussian waves. However, waves are not necessarily Gaussian, In
fact, high waves which produce the extreme values are seldom
Gaussian, The distribution of nonlinear and non-Gaussian waves has
received some attention in the past several years. Several methods
have been presented here that deal with non-Gaussain waves and
excitation. The treatment of corresponding non-Gaussain responses
is relatively few, More theoretical and general statistical
description of non-Gaussian response behavior of more practical
marine structures should be developed. Such developments should
include cases of non-Gaussian random excitation of a linear system,
and Gaussian random excitation of a nonlinear system as well as a
combination of the two,
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The interaction of waves and currents and the resulting influence on
the responses should be thoroughly investigated. The influence of
currents on the random wave loading both for Morison type loading
and of second-order drift forces is not known adequately.

The probability of simultaneous occurrence of waves (with parameter
Hg, T, and 8g) and current (with parameter U, 6g and profile with
depth) should be known.,

The formulation of the long-term probability distribution for the
characteristic wave height and wave period is 1limited. More
knowledge of the actual distribution function for these parameters
is needed so that accurate long-term prediction of responses is
possible.

The probabilistic description of the water particle kinematics in
the free surface zone 1is limited. Further work 1is needed,
particularly through experiments with high waves, to collect data in
this area so that a better understanding of the free surface effect
on marine structures may be achieved in a probabilistic sense,

Most of the statistical treatments of nonlinear problems have been
centered around the wave exciting forces in the form of Morison
equatiecs, i~ & few studies [ave been made regarding nonlinear
structural responses, more work is needed to determine the effect of
nonlinear forces on the structural responses (both linear and
nonlinear) and how they can be used to derive the extreme response
values.,

The above is a list of some of the general areas of nonlinear extreme

value analysis that are required in the future years to come so that the
state-of-the-art may be extended to the point where it may be incorporated in
the design of marine structures in a routine manner. These investigations are
complicated and will require considerable time to develop. Because of the
limited knowledge in this area this technique is not used routinely by
offshore design engineers for nonlinear systems, It is hoped that the
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strengths and limitations of various methods described here will enable the
design engineer to attempt to use these methods more often where appropriate.

However, additional work may be performed to make this report more
valuable to the designer, This will require performing several case studies
based on various approximate methods described here. Since many of the
simplified methods outlined do not need complicated numerical computation and
simple expressions have been included in many cases, such an analysis will be
relatively straight-forward compared to the work under Recommendations 1-7
above. Hypothetical but practical structures along with their design
parameters may be chosen for the design calculation purposes. The structures
will be kept simnle so that the calculation process is not too involved and
comparison of various methods is not difficult., The design computations will
be made in a systematic manner and extreme values of the responses will be
predicted for each method chosen, Where the methods are not applicable
because of inherent assumptions it will be so stated. This then, may be used
as a cookbook by a designer in his own design, He may also be able to use his
engineering judgment regarding the choice of a suitable method and its effect
on the extreme value prediction., Any necessary correction to this value
because of his model may then be easier to make.
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